1. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 40-50, 2012.
doi:10.1109/MAP.2012.6202511 Google Scholar
2. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3813-3820, 2009.
doi:10.1109/TAP.2009.2033435 Google Scholar
3. Nguyen, P. T., A. M. Abbosh, and S. Crozier, "3-D focused microwave hyperthermia for breast cancer treatment with experimental validation," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3489-3500, 2017.
doi:10.1109/TAP.2017.2700164 Google Scholar
4. Li, P.-F., S.-W. Qu, and S. Yang, "Two-dimensional imaging based on near-field focused array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, No. 2, 274-278, 2018.
doi:10.1109/LAWP.2018.2888853 Google Scholar
5. Li, L., et al. "Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting," Appl. Phys. Lett., Vol. 116, No. 6, 060501, 2020.
doi:10.1063/1.5140966 Google Scholar
6. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392 Google Scholar
7. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, 2011.
doi:10.1109/TAP.2011.2123069 Google Scholar
8. You, B., Y. Liu, J. Zhou, and H. Chou, "Numerical synthesis of dualband reflectarray antenna for optimum near-field radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 760-762, 2012. Google Scholar
9. Plaza, E. G., et al. "An ultrathin 2-bit near-field transmitarray lens," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1784-1787, 2017. Google Scholar
10. Li, Y., et al. "Cylindrical conformal array antenna for near field focusing," Int. J. RF Microw. Comput.-Aid. Eng., Vol. 32, No. 6, e23135, 2022.
doi:10.1002/mmce.23135 Google Scholar
11. He, Q., S. L. Sun, S. Y. Xiao, et al. "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.
doi:10.1088/1674-1056/23/4/047808 Google Scholar
12. Holloway, C. L., E. F. Kuester, and D. Novotny, "Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 525-529, 2009.
doi:10.1109/LAWP.2009.2018123 Google Scholar
13. Yu, S., et al. "Design of dual-polarized reflectarray for near-field shaped focusing," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 5, 803-807, 2021.
doi:10.1109/LAWP.2021.3063848 Google Scholar
14. Huang, H. and J. Zhang, "Multifunctional near field focusing transmission metasurface based on polarization sensitivity," Microw. Opt. Technol. Lett., Vol. 63, No. 7, 1868-1874, 2021.
doi:10.1002/mop.32858 Google Scholar
15. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3016-3024, 2015.
doi:10.1109/TAP.2015.2426832 Google Scholar
16. Fong, B. H., et al. "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, 2010.
doi:10.1109/TAP.2010.2055812 Google Scholar
17. Pandi, S., C. A. Balanis, and C. R. Birtcher, "Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1403-1413, 2013. Google Scholar