State Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageState Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageSchool of Electrical and Electronic Engineering
North China Electric Power University
China
HomepageState Key Laboratory of Advanced Power Transmission Technology (State Grid Smart Grid Research Institute Co. Ltd.)
China
HomepageElectric Power Research Institute
State Grid Zhejiang Electric Power Company
China
HomepageSchool of Electrical and Electronic Engineering
North China Electric Power University
China
HomepageState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Changping District
China
Homepage1. Frikha, A., M. Bensetti, F. Duval, et al. "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Transactions on Magnetics, Vol. 51, No. 3, 1-4, Mar. 2015.
doi:10.1109/TMAG.2014.2362953 Google Scholar
2. Frikha, A., M. Bensetti, L. Pichon, et al. "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, 1481-1490, Dec. 2015.
doi:10.1109/TEMC.2015.2463677 Google Scholar
3. Mou, W. and M. Lu, "Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil," Progress in Electromagnetics Research C, Vol. 117, 55-72, 2021.
doi:10.2528/PIERC21072701 Google Scholar
4. Zhou, Y., L. Zhang, S. Xiu, et al. "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
doi:10.1109/ACCESS.2019.2939197 Google Scholar
5. Lee, S., D.-H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless highpower transfer system," IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 4356-4367, Jun. 2019.
doi:10.1109/TIE.2018.2851988 Google Scholar
6. Lu, C., X. Huang, C. Rong, et al. "Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial," The Journal of Engineering, Vol. 2019, No. 16, 1812-1815, 2019.
doi:10.1049/joe.2018.8678 Google Scholar
7. Ma, D., M. Ding, J. Lu, et al. "Study of shielding ratio of cylindrical ferrite enclosure with gaps and holes," IEEE Sensors Journal, Vol. 19, No. 15, 6085-6092, Aug. 2019.
doi:10.1109/JSEN.2019.2904719 Google Scholar
8. Zhao, J., J. Zhang, Z. Liu, et al. "Immunity requirements for secondary equipment with regard to switching operations of disconnectors in substations," 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), 135-138, Oct. 2016. Google Scholar
9. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, No. 1, 6-18, Mar. 1967.
doi:10.1109/TEMC.1967.4307447 Google Scholar
10. Lovat, G., P. Burghignoli, R. Araneo, et al. "Magnetic shielding of planar metallic screens: A new analytical closed-form solution," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1884-1888, Nov. 2020.
doi:10.1109/TEMC.2019.2952401 Google Scholar
11. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley & Sons, Ltd., 2008.
doi:10.1002/9780470268483
12. Mohammadi, E., P. Dehkhoda, A. Tavakoli, et al. "Shielding effectiveness of a metallic perforated enclosure by mesh-free method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 758-765, Jun. 2016.
doi:10.1109/TEMC.2016.2526662 Google Scholar
13. Achkar, G. A., L. Pichon, M. Bensetti, and L. Daniel, "Homogenization of metal grid reinforced composites for near-field low frequency magnetic shielding," Progress In Electromagnetics Research M, Vol. 99, 153-163, 2021.
doi:10.2528/PIERM20052402 Google Scholar
14. Yang, X. C., Z. X. Zhang, F. Ning, et al. "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low frequency magnetic fields," IEEE Acess, Vol. 8, 79844-79850, Apr. 2020.
doi:10.1109/ACCESS.2020.2988709 Google Scholar
15. Bai, W. X., F. Ning, X. C. Yang, et al. "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 30-37, Feb. 2021.
doi:10.1109/TEMC.2020.2986249 Google Scholar
16. Smedt, R. D., J. De Moerloose, S. Criel, et al. "Approximate simulation of the shielding effectiveness of a rectangular enclosure with a grid wall," 1998 IEEE EMC Symposium, International Symposium on Electromagnetic Compatibility, Symposium Record (Cat. No.98CH36253), 1030-1034, Aug. 1998.
doi:10.1109/ISEMC.1998.750350 Google Scholar
17. Lee, K. and G. Bedrosian, "Diffusive electromagnetic penetration into metallicenclosures," IEEE Transactions on Antennas Propagation, Vol. 27, No. 2, 194-198, Mar. 1979.
doi:10.1109/TAP.1979.1142064 Google Scholar
18. Kelha, V., J. Pukki, R. Peltonen, et al. "Design, construction, and performance of a large-volume magnetic shield," IEEE Transactions on Magnetics, Vol. 18, No. 1, 260-270, Jan. 1982.
doi:10.1109/TMAG.1982.1061780 Google Scholar
19. Park, Y. B. and H. S. Lee, "Magnetostatic field penetration into multiple annular apertures," IEEE Transactions on Magnetics, Vol. 46, No. 11, 3866-3869, Nov. 2010.
doi:10.1109/TMAG.2010.2055576 Google Scholar
20. Sten, J. C.-E., "Magnetic moment and surface dipole distributions of circular holes in a conducting screen," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 4, 290-297, Nov. 1999.
doi:10.1109/15.809796 Google Scholar
21. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 163, Jan. 1944. Google Scholar
22. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 43, 298-306, Aug. 1988.
doi:10.1109/15.3309 Google Scholar
23. COMSOL Multiphysics, https://www.comsol.asia/comsol-multiphysics, last accessed 2022/7/3. Google Scholar
24. Park, H. H., C. H. Hyoung, and J. H. Kwon, "Improvement of low-frequency magnetic shielding measurement using rhombic and long rectangular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1364-1368, Aug. 2020.
doi:10.1109/TEMC.2019.2942523 Google Scholar