Vol. 109
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-02-16
Approximate Simulation of Low Frequency Magnetic Shielding of a Rectangular Shielding Box with All Walls Perforated Periodical Holes
By
Progress In Electromagnetics Research Letters, Vol. 109, 31-39, 2023
Abstract
This article proposes an approximate analytical formulation to calculate the low-frequency magnetic shielding of a rectangular metallic box, with all walls perforated periodical holes. The solution is obtained by the combination of two submodels: the finite conductivity box with the holes covered and the perfect conductor box with the holes present. The first submodel represents the diffusion effect of magnetic field penetration through the conducting shell, and the second one denotes the aperture effect of magnetic field leakage through the holes. The total shielded magnetic field is the superposition of these from the two submodels. For the diffusion effect, an existing empirical formula based on the shape factor is used. To solve the second submodel, we employ two approximate methods: the method of images and the surface-impedance method. The method of images models each hole in the walls as an equivalent magnetic dipole and its images based on Bethe's small aperture coupling theory. A PEC box is first considered. Comparisons with finite element simulations show that the method of images has better accuracy than the surface-impedance method. Then, a cubic aluminum box of 0.2 m in length is treated, which verifies that combining the two submodels can produce results in good agreement with finite element simulations for frequencies up to 10 MHz. In addition, the dependence of the shielding effectiveness on frequency is also analyzed.
Citation
Zelai Sun, Wei Dong, Dingyu Qin, Lin Zheng, Peng Qiu, Chao Ding, Xiaochen Yang, and Chongqing Jiao, "Approximate Simulation of Low Frequency Magnetic Shielding of a Rectangular Shielding Box with All Walls Perforated Periodical Holes," Progress In Electromagnetics Research Letters, Vol. 109, 31-39, 2023.
doi:10.2528/PIERL22070301
References

1. Frikha, A., M. Bensetti, F. Duval, et al. "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Transactions on Magnetics, Vol. 51, No. 3, 1-4, Mar. 2015.
doi:10.1109/TMAG.2014.2362953

2. Frikha, A., M. Bensetti, L. Pichon, et al. "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 6, 1481-1490, Dec. 2015.
doi:10.1109/TEMC.2015.2463677

3. Mou, W. and M. Lu, "Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil," Progress in Electromagnetics Research C, Vol. 117, 55-72, 2021.
doi:10.2528/PIERC21072701

4. Zhou, Y., L. Zhang, S. Xiu, et al. "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
doi:10.1109/ACCESS.2019.2939197

5. Lee, S., D.-H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless highpower transfer system," IEEE Transactions on Industrial Electronics, Vol. 66, No. 6, 4356-4367, Jun. 2019.
doi:10.1109/TIE.2018.2851988

6. Lu, C., X. Huang, C. Rong, et al. "Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial," The Journal of Engineering, Vol. 2019, No. 16, 1812-1815, 2019.
doi:10.1049/joe.2018.8678

7. Ma, D., M. Ding, J. Lu, et al. "Study of shielding ratio of cylindrical ferrite enclosure with gaps and holes," IEEE Sensors Journal, Vol. 19, No. 15, 6085-6092, Aug. 2019.
doi:10.1109/JSEN.2019.2904719

8. Zhao, J., J. Zhang, Z. Liu, et al. "Immunity requirements for secondary equipment with regard to switching operations of disconnectors in substations," 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), 135-138, Oct. 2016.

9. Moser, J. R., "Low-frequency shielding of a circular loop electromagnetic field source," IEEE Transactions on Electromagnetic Compatibility, Vol. 9, No. 1, 6-18, Mar. 1967.
doi:10.1109/TEMC.1967.4307447

10. Lovat, G., P. Burghignoli, R. Araneo, et al. "Magnetic shielding of planar metallic screens: A new analytical closed-form solution," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1884-1888, Nov. 2020.
doi:10.1109/TEMC.2019.2952401

11. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley & Sons, Ltd., 2008.
doi:10.1002/9780470268483

12. Mohammadi, E., P. Dehkhoda, A. Tavakoli, et al. "Shielding effectiveness of a metallic perforated enclosure by mesh-free method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 758-765, Jun. 2016.
doi:10.1109/TEMC.2016.2526662

13. Achkar, G. A., L. Pichon, M. Bensetti, and L. Daniel, "Homogenization of metal grid reinforced composites for near-field low frequency magnetic shielding," Progress In Electromagnetics Research M, Vol. 99, 153-163, 2021.
doi:10.2528/PIERM20052402

14. Yang, X. C., Z. X. Zhang, F. Ning, et al. "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low frequency magnetic fields," IEEE Acess, Vol. 8, 79844-79850, Apr. 2020.
doi:10.1109/ACCESS.2020.2988709

15. Bai, W. X., F. Ning, X. C. Yang, et al. "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 30-37, Feb. 2021.
doi:10.1109/TEMC.2020.2986249

16. Smedt, R. D., J. De Moerloose, S. Criel, et al. "Approximate simulation of the shielding effectiveness of a rectangular enclosure with a grid wall," 1998 IEEE EMC Symposium, International Symposium on Electromagnetic Compatibility, Symposium Record (Cat. No.98CH36253), 1030-1034, Aug. 1998.
doi:10.1109/ISEMC.1998.750350

17. Lee, K. and G. Bedrosian, "Diffusive electromagnetic penetration into metallicenclosures," IEEE Transactions on Antennas Propagation, Vol. 27, No. 2, 194-198, Mar. 1979.
doi:10.1109/TAP.1979.1142064

18. Kelha, V., J. Pukki, R. Peltonen, et al. "Design, construction, and performance of a large-volume magnetic shield," IEEE Transactions on Magnetics, Vol. 18, No. 1, 260-270, Jan. 1982.
doi:10.1109/TMAG.1982.1061780

19. Park, Y. B. and H. S. Lee, "Magnetostatic field penetration into multiple annular apertures," IEEE Transactions on Magnetics, Vol. 46, No. 11, 3866-3869, Nov. 2010.
doi:10.1109/TMAG.2010.2055576

20. Sten, J. C.-E., "Magnetic moment and surface dipole distributions of circular holes in a conducting screen," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 4, 290-297, Nov. 1999.
doi:10.1109/15.809796

21. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 163, Jan. 1944.

22. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 43, 298-306, Aug. 1988.
doi:10.1109/15.3309

23. COMSOL Multiphysics, https://www.comsol.asia/comsol-multiphysics, last accessed 2022/7/3.

24. Park, H. H., C. H. Hyoung, and J. H. Kwon, "Improvement of low-frequency magnetic shielding measurement using rhombic and long rectangular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1364-1368, Aug. 2020.
doi:10.1109/TEMC.2019.2942523