Vol. 123
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-29
Design and Analysis of a Novel Mechanical Variable Flux Interior Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research C, Vol. 123, 167-179, 2022
Abstract
In this paper, a novel mechanical variable flux interior permanent magnet synchronous motor (MVF-IPMSM) is proposed. Based on the basic topology and operating principle of MVF-IPMSM, the effect of the special PMs structure in the new rotor topology on the air gap magnetic field and the design of the mechanical magnetic adjustment device of the proposed motor are analyzed, in which the finite element analysis (FEA) method is adopted. The electromagnetic characteristics of the MVF-IPMSM are analyzed including internal magnetic field distribution, air gap flux density, and torque characteristics. Furthermore, the ability of magnetic field regulation is also analyzed which can be reflected by the torque-speed and power-speed envelopes. Finally, a prototype is manufactured and tested. The measured results are compared with the FEA results, and the prototype experiments verify the effectiveness and feasibility of the design of the proposed MVF-IPMSM.
Citation
Jianwei Liang, Dabin Liu, Yun Gao, Hongwei Yuan, and Xiping Liu, "Design and Analysis of a Novel Mechanical Variable Flux Interior Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research C, Vol. 123, 167-179, 2022.
doi:10.2528/PIERC22070802
References

1. Pellegrino, G., A. Vacate, P. Guglielmo, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 803-811, Feb. 2012.
doi:10.1109/TIE.2011.2151825

2. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, Aug. 2017.
doi:10.1109/TIE.2017.2682792

3. Jahns, T. M., "Motion control with permanent-magnet AC machines," IEEE Trans. Industry Applications, Vol. 82, No. 8, 1241-1252, 1994.

4. Sneyers, B., D. W. Novotny, and T. A. Lipo, "Field weakening in buried permanent magnet AC motor drives," IEEE Transactions on Industry Applications, Vol. 21, No. 2, 398-407, 1985.
doi:10.1109/TIA.1985.349661

5. Chen, J., J. Li, et al. "Analysis, modeling, and current trajectory control of magnetization state manipulation in variable-flux permanent magnet machines," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5133-5143, 2018.
doi:10.1109/TIE.2018.2868306

6. Jayarajan, R., N. Fernando, and I. U. Nutkani, "A review on variable flux machine technology: Topologies, control strategies and magnetic materials," IEEE Access, Vol. 7, 70141-70156, 2019.
doi:10.1109/ACCESS.2019.2918953

7. Takaaki, I., N. Tsuyoshi, O. Sohei, et al. "Manufacturing and control of a variable magnetic flux motor prototype with a mechanical adjustment method," Electrical Engineering in Japan, Vol. 199, No. 1, 57-66, 2017.
doi:10.1002/eej.22950

8. Eiki, M., N. Noboru, and H. Katsuhiro, "Variable flux permanent magnet motor utilizing centrifugal force," International Journal of Applied Electromagnetics and Mechanics, Vol. 521, No. 2, 563-569, 2016.

9. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, et al. "A mechanical flux weakening method for switched flux permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 806-815, 2015.
doi:10.1109/TEC.2014.2380851

10. Del Ferraro, L., F. Caricchi, et al. "Analysis and comparison of a speed-dependant and a torque-dependant mechanical device for wide constant power speed range in AFPM starter/alternators," IEEE Transactions on Power Electronics, Vol. 3, 720-729, 2006.
doi:10.1109/TPEL.2006.872377

11. Liu, X., Y. Li, Z. Liu, et al. "Analysis and experimental investigation on flux-adjusting characteristic for a mechanical flux-adjusting axial PM synchronous machine," Transactions of China Electrotechnical Society, Vol. 33, No. 5, 9, 2018.
doi:10.1149/2.0801802jes

12. Liu, X., J. Xiao, H. Xu, et al. "Analysis of flux weakening performance of a novel variable flux permanent magnet synchronous machine with rotating magnetic pole," Transactions of China Electrotechnical Society, Vol. 35, No. 15, 9, 2020.

13. Liu, X., T. Sun, Y. Zou, et al. "Modelling and analysis of a novel mechanical-variable-flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 4, 2020.

14. Cheng, S., C. Li, and B. Kou, "Research on the variable exciting function of a variable exciting magnetic reluctance PMSM," Proceedings of the CSEE, Vol. 27, No. 033, 17-21, 2007.

15. Chai, F. and Y. Bi, "Research review of flux-weakening methods of axial flux permanent magnet synchronous machine," Micromotors, Vol. 48, No. 02, 69-76, 2015.

16. Cao, Y., L. Feng, R. Mao, and K. Li, "Analysis of analytical magnetic field and flux regulation characteristics of axial-flux permanent magnet memory machine," IEEE Transactions on Magnetics, Early Access Article, 2022.

17. Ceylan, D., K. O. Boynov, and E. A. Lomonova, "Multi-objective optimization of a variable flux reluctance machine for high-torque operations," 2022 23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), 1-4, 2022.

18. Liu, W., H. Yang, H. Lin, F. Peng, S. Lyu, and X. Huang, "Thermal modeling and analysis of hybrid-magnetic-circuit variable flux memory machine," IEEE Transactions on Industry Applications, 2022.