1. Panwar, N., S. Sharma, and A. K. Singh, "A survey on 5G: The next generation of mobile communication," Physical Communication, Vol. 18, 64-84, 2016..
doi:10.1016/j.phycom.2015.10.006 Google Scholar
2. Huang, T., W. Yang, J. Wu, X. Ma, X. F. Zhang, and D. Y. Zhang, "A survey on green 6G network: Architecture and technologies," IEEE Access, Vol. 7, 175758-175768, 2019.
doi:10.1109/ACCESS.2019.2957648 Google Scholar
3. Alabish, A., A. Goweder, and A. Dowa, "Measurement system and its suitability for examining indoor millimeter wave propagation at 28-33 GHz," IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA, 608-612, 2021. Google Scholar
4. Mohammed, I., A. M. Aibinu, and T. Karataev, "Overview of radio propagation models in the millimeter wave range for cellular networks," IEEE International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), 1-6, 2021. Google Scholar
5. Hamdan, N. and B. K. Engiz, "A brief review of path loss models for mmwave channels," Avrupa Bilim ve Teknoloji Dergisi, Vol. 29, 264-272, 2021. Google Scholar
6. Al-Saman, A., M. Cheffena, O. Elijah, Y. A. Al-Gumaei, S. K. Abdul-Rahim, and T. Al-Hadhrami, "Survey of millimeter-wave propagation measurements and models in indoor environments," Electronics, Vol. 10, No. 14, 1653, 2021.
doi:10.3390/electronics10141653 Google Scholar
7. Shabbir, N., L. Kütt, M. M. Alam, P. Roosipuu, M. Jawad, M. B. Qureshi, A. R. Ansari, and R. Nawaz, "Vision towards 5G: Comparison of radio propagation models for licensed and unlicensed indoor femtocell sensor networks," Physical Communication, Vol. 47, 101371, 2021.
doi:10.1016/j.phycom.2021.101371 Google Scholar
8. Obeidat, H., A. Alabdullah, E. Elkhazmi, W. Suhaib, O. Obeidat, M. Alkhambashi, M. Mosleh, N. Ali, Y. Dama, Z. Abidin, R. Abd-Alhameed, and P. Excell, "Indoor environment propagation review," Computer Science Review, Vol. 37, 100272, 2020.
doi:10.1016/j.cosrev.2020.100272 Google Scholar
9. Alobaidy, H. A., M. J. Singh, M. Behjati, R. Nordin, and N. F. Abdullah, "Wireless transmissions, propagation and channel modelling for IoT technologies: Applications and challenges," IEEE Access, Vol. 10, 24095-24131, 2022.
doi:10.1109/ACCESS.2022.3151967 Google Scholar
10. Majed, M. B., T. A. Rahman, O. A. Aziz, M. N. Hindia, and E. Hanafi, "Channel characterization and path loss modeling in indoor environment at 4.5, 28, and 38 GHz for 5G cellular networks," International Journal of Antennas and Propagation, Vol. 2018, 2018. Google Scholar
11. Xing, Y., T. S. Rappaport, and A. Ghosh, "Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment," IEEE Communications Letters, Vol. 25, No. 110, 3151-3155, 2021.
doi:10.1109/LCOMM.2021.3088264 Google Scholar
12. Abbasi, N. A., A. Hariharan, A. M. Nair, and A. F. Molisch, "Channel measurements and path loss modeling for indoor THz communication," IEEE European Conference on Antennas and Propagation (EuCAP), 1-5, 2020. Google Scholar
13. Song, Q., P. Tang, T. Jiang, L. Tian, J. Zhang, and J. Dou, "Modeling of path loss characteristics in a waveguide-like structure scenario at 28 GHz," IEEE European Conference on Antennas and Propagation (EuCAP), 1-5, 2021. Google Scholar
14. Goes, A. A., P. Cardieri, and M. D. Yacoub, "Characterization of the RFID deterministic path loss in manufacturing environments," IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 647-652, 2012. Google Scholar
15. Park, K. M., J. Y. Lee, S. H. Hyun, and S. C. Kim, "Analysis of path loss properties in indoor hallway with waveguide channel model," IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 1-5, 2019. Google Scholar
16. Li, S., Y. Liu, X. Zhang, and X. Qi, "Measurement and simulation of 28 GHz millimeter-wave propagation characteristics in the corridor environment," IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 134-137, 2016.
doi:10.1109/UCMMT.2016.7873988 Google Scholar
17. Bhuvaneshwari, A., R. Hemalatha, and T. Satyasavithri, "Path loss prediction analysis by ray tracing approach for NLOS indoor propagation," IEEE International Conference on Signal Processing and Communication Engineering Systems, 486-491, 2015. Google Scholar
18. Hossain, F., T. K. Geok, T. A. Rahman, M. N. Hindia, K. Dimyatiet, and A. Abdaziz, "Indoor millimeter-wave propagation prediction by measurement and ray tracing simulation at 38 GHz," Symmetry, Vol. 10, No. 10, 464, 2018.
doi:10.3390/sym10100464 Google Scholar
19. Liu, J., D. W. Matolak, M. Mohsen, and J. Chen, "Path loss modeling and ray-tracing verification for 5/31/90 GHz indoor channels," IEEE 90th Vehicular Technology Conference (VTC 2019-Fall), 1-6, 2019. Google Scholar
20. He, D., B. Ai, K. Guan, L. H. Wang, Z. D. Zhong, and K. Thomas, "The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial," IEEE Communications Surveys & Tutorials, Vol. 21, No. 1, 10-27, 2018.
doi:10.1109/COMST.2018.2865724 Google Scholar
21. Guo, H., Z. Sun, and P. Wang, "Channel modeling of MI underwater communication using tri-directional coil antenna," IEEE Global Communications Conference (GLOBECOM), 1-6, 2015. Google Scholar
22. Rappaport, T. S., Wireless Communications --- Principles and Practice, 2nd Ed., Prentice Hall PTR, New Jersey, 2002.
23. Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, McGraw-Hill Publications, New York, 1998.
24. Yu, Y., P. F. Cui, W. J. Lu, Y. Liu, and H. B. Zhu, "Off-body radio channel impulse response model under hospital environment: Measurement and modeling," IEEE Communications Letters, Vol. 20, No. 11, 2332-2335, 2016.
doi:10.1109/LCOMM.2016.2604252 Google Scholar
25. Molina-Garcia-Pardo, J. M., C. Garcia-Pardo, J. V. Rodriguez, and L. Juan-Llacer, "Path loss and delay spread in UWB channels," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009. Google Scholar
26. Oyie, N. O. and T. J. O. Afullo, "An empirical approach to omnidirectional path loss and line-of-sight probability models at 18 GHz for 5G networks," 2018 Progress In Electromagnetics Research Symposium (PIERS --- Toyama), 129-136, Toyama, Japan, August 1--4, 2018. Google Scholar
27. Goldsmith, A., Wireless Communications,, Cambridge University Press, Cambridge, 2005.
doi:10.1017/CBO9780511841224
28. Olkkonen, M., V. Mikhnev, and E. Huuskonen-Snicker, "Complex permittivity of concrete in the frequency range 0.8 to 12 GHz," IEEE European Conference on Antennas and Propagation (EuCAP), 3319-3321, 2013. Google Scholar
29. Grosvenor, C. A., R. T. Johnk, J. Baker-Jarvis, M. D. Janezic, and B. Riddle, "Time-domain free-field measurements of the relative permittivity of building materials," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 7, 2275-2282, 2009.
doi:10.1109/TIM.2009.2013916 Google Scholar
30. Oyie, N. O. and T. J. O. Afullo, "Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor," IEEE Access, Vol. 6, 17205-17214, 2018.
doi:10.1109/ACCESS.2018.2802038 Google Scholar