Vol. 126
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-09
A 3D Multi-Rays Path Loss Model Above 6 GHz Under Indoor Environments with Regular Structures
By
Progress In Electromagnetics Research C, Vol. 126, 157-172, 2022
Abstract
An analytical multi-rays path loss model with low complexity and high accuracy is proposed to realize the ubiquitous communication links with solid stability and full coverage. The closed-form formulas are derived to describe the path loss above 6 GHz under regularly-structured indoor environments, ensuring a clear propagation mechanism and low computational complexity. In this model, the construction and destruction of the dominant rays, i.e., the direct, reflected, diffracted, diffracted reflected, and reflected-reflected rays, on the path loss, are considered according to variation of the transmitting antenna position and propagation condition. The proposed model contains information on the sizes, structures, and materials of the environments and eliminates the influences of small scale fading by averaging the path loss over a circle with radius of ten wavelengths. Based on the measurements under the ``L-shaped'' corridor and office environments at 8 GHz band, the accuracy and extensibility of the proposed path model are verified. This work can help analyze the propagation mechanisms and construct the solver for calculating the attenuation of electromagnetic waves under indoor environments. It can also provide vital information for the link budget and node deployment for future wireless communication systems above 6 GHz.
Citation
Yu Yu Ting-Ting Liu Yong-Qiang Bao Hengfei Xu Shu Jiang Wen-Hao Zeng , "A 3D Multi-Rays Path Loss Model Above 6 GHz Under Indoor Environments with Regular Structures," Progress In Electromagnetics Research C, Vol. 126, 157-172, 2022.
doi:10.2528/PIERC22073004
http://www.jpier.org/PIERC/pier.php?paper=22073004
References

1. Panwar, N., S. Sharma, and A. K. Singh, "A survey on 5G: The next generation of mobile communication," Physical Communication, Vol. 18, 64-84, 2016..
doi:10.1016/j.phycom.2015.10.006

2. Huang, T., W. Yang, J. Wu, X. Ma, X. F. Zhang, and D. Y. Zhang, "A survey on green 6G network: Architecture and technologies," IEEE Access, Vol. 7, 175758-175768, 2019.
doi:10.1109/ACCESS.2019.2957648

3. Alabish, A., A. Goweder, and A. Dowa, "Measurement system and its suitability for examining indoor millimeter wave propagation at 28-33 GHz," IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA, 608-612, 2021.

4. Mohammed, I., A. M. Aibinu, and T. Karataev, "Overview of radio propagation models in the millimeter wave range for cellular networks," IEEE International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), 1-6, 2021.

5. Hamdan, N. and B. K. Engiz, "A brief review of path loss models for mmwave channels," Avrupa Bilim ve Teknoloji Dergisi, Vol. 29, 264-272, 2021.

6. Al-Saman, A., M. Cheffena, O. Elijah, Y. A. Al-Gumaei, S. K. Abdul-Rahim, and T. Al-Hadhrami, "Survey of millimeter-wave propagation measurements and models in indoor environments," Electronics, Vol. 10, No. 14, 1653, 2021.
doi:10.3390/electronics10141653

7. Shabbir, N., L. Kütt, M. M. Alam, P. Roosipuu, M. Jawad, M. B. Qureshi, A. R. Ansari, and R. Nawaz, "Vision towards 5G: Comparison of radio propagation models for licensed and unlicensed indoor femtocell sensor networks," Physical Communication, Vol. 47, 101371, 2021.
doi:10.1016/j.phycom.2021.101371

8. Obeidat, H., A. Alabdullah, E. Elkhazmi, W. Suhaib, O. Obeidat, M. Alkhambashi, M. Mosleh, N. Ali, Y. Dama, Z. Abidin, R. Abd-Alhameed, and P. Excell, "Indoor environment propagation review," Computer Science Review, Vol. 37, 100272, 2020.
doi:10.1016/j.cosrev.2020.100272

9. Alobaidy, H. A., M. J. Singh, M. Behjati, R. Nordin, and N. F. Abdullah, "Wireless transmissions, propagation and channel modelling for IoT technologies: Applications and challenges," IEEE Access, Vol. 10, 24095-24131, 2022.
doi:10.1109/ACCESS.2022.3151967

10. Majed, M. B., T. A. Rahman, O. A. Aziz, M. N. Hindia, and E. Hanafi, "Channel characterization and path loss modeling in indoor environment at 4.5, 28, and 38 GHz for 5G cellular networks," International Journal of Antennas and Propagation, Vol. 2018, 2018.

11. Xing, Y., T. S. Rappaport, and A. Ghosh, "Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment," IEEE Communications Letters, Vol. 25, No. 110, 3151-3155, 2021.
doi:10.1109/LCOMM.2021.3088264

12. Abbasi, N. A., A. Hariharan, A. M. Nair, and A. F. Molisch, "Channel measurements and path loss modeling for indoor THz communication," IEEE European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

13. Song, Q., P. Tang, T. Jiang, L. Tian, J. Zhang, and J. Dou, "Modeling of path loss characteristics in a waveguide-like structure scenario at 28 GHz," IEEE European Conference on Antennas and Propagation (EuCAP), 1-5, 2021.

14. Goes, A. A., P. Cardieri, and M. D. Yacoub, "Characterization of the RFID deterministic path loss in manufacturing environments," IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 647-652, 2012.

15. Park, K. M., J. Y. Lee, S. H. Hyun, and S. C. Kim, "Analysis of path loss properties in indoor hallway with waveguide channel model," IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 1-5, 2019.

16. Li, S., Y. Liu, X. Zhang, and X. Qi, "Measurement and simulation of 28 GHz millimeter-wave propagation characteristics in the corridor environment," IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 134-137, 2016.
doi:10.1109/UCMMT.2016.7873988

17. Bhuvaneshwari, A., R. Hemalatha, and T. Satyasavithri, "Path loss prediction analysis by ray tracing approach for NLOS indoor propagation," IEEE International Conference on Signal Processing and Communication Engineering Systems, 486-491, 2015.

18. Hossain, F., T. K. Geok, T. A. Rahman, M. N. Hindia, K. Dimyatiet, and A. Abdaziz, "Indoor millimeter-wave propagation prediction by measurement and ray tracing simulation at 38 GHz," Symmetry, Vol. 10, No. 10, 464, 2018.
doi:10.3390/sym10100464

19. Liu, J., D. W. Matolak, M. Mohsen, and J. Chen, "Path loss modeling and ray-tracing verification for 5/31/90 GHz indoor channels," IEEE 90th Vehicular Technology Conference (VTC 2019-Fall), 1-6, 2019.

20. He, D., B. Ai, K. Guan, L. H. Wang, Z. D. Zhong, and K. Thomas, "The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial," IEEE Communications Surveys & Tutorials, Vol. 21, No. 1, 10-27, 2018.
doi:10.1109/COMST.2018.2865724

21. Guo, H., Z. Sun, and P. Wang, "Channel modeling of MI underwater communication using tri-directional coil antenna," IEEE Global Communications Conference (GLOBECOM), 1-6, 2015.

22. Rappaport, T. S., Wireless Communications --- Principles and Practice, 2nd Ed., Prentice Hall PTR, New Jersey, 2002.

23. Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, McGraw-Hill Publications, New York, 1998.

24. Yu, Y., P. F. Cui, W. J. Lu, Y. Liu, and H. B. Zhu, "Off-body radio channel impulse response model under hospital environment: Measurement and modeling," IEEE Communications Letters, Vol. 20, No. 11, 2332-2335, 2016.
doi:10.1109/LCOMM.2016.2604252

25. Molina-Garcia-Pardo, J. M., C. Garcia-Pardo, J. V. Rodriguez, and L. Juan-Llacer, "Path loss and delay spread in UWB channels," IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.

26. Oyie, N. O. and T. J. O. Afullo, "An empirical approach to omnidirectional path loss and line-of-sight probability models at 18 GHz for 5G networks," 2018 Progress In Electromagnetics Research Symposium (PIERS --- Toyama), 129-136, Toyama, Japan, August 1--4, 2018.

27. Goldsmith, A., Wireless Communications,, Cambridge University Press, Cambridge, 2005.
doi:10.1017/CBO9780511841224

28. Olkkonen, M., V. Mikhnev, and E. Huuskonen-Snicker, "Complex permittivity of concrete in the frequency range 0.8 to 12 GHz," IEEE European Conference on Antennas and Propagation (EuCAP), 3319-3321, 2013.

29. Grosvenor, C. A., R. T. Johnk, J. Baker-Jarvis, M. D. Janezic, and B. Riddle, "Time-domain free-field measurements of the relative permittivity of building materials," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 7, 2275-2282, 2009.
doi:10.1109/TIM.2009.2013916

30. Oyie, N. O. and T. J. O. Afullo, "Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor," IEEE Access, Vol. 6, 17205-17214, 2018.
doi:10.1109/ACCESS.2018.2802038