1. Zhang, F. G., G. L. Jia, Y. Zheng, and T. Guan, "Analysis and experimental study of brushless electrically-excited synchronous generator with hybrid rotor," 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 332-333, Nov. 2015.
2. Pallantla, M., P. Kumar, and N. Mohan, "Comparison and evaluation of the different brushless excitation topologies for synchronous machines --- A literature survey," 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 1-6, Jan. 2020.
3. Berweiler, B. and B. Ponick, "Current and average temperature calculation for electrically excited synchronous machines in case of contactless energy supply," 2020 International Conference on Electrical Machines (ICEM), Vol. 1, 1730-1735, Aug. 2020.
4. Hsieh, M.-F., Y.-H. Chang, and D. G. Dorrell, "Design and analysis of brushless doubly fed reluctance machine for renewable energy applications," IEEE Trans. Magn., Vol. 52, No. 7, 1-5, Jul. 2016.
5. Zhang, F., H. Wang, G. Jia, D. Ma, and M. G. Jovanovic, "Effects of design parameters on performance of brushless electrically excited synchronous reluctance generator," IEEE Trans. Ind. Electron., Vol. 65, No. 11, 9179-9189, Nov. 2018.
6. Zhang, F., J. Xu, G. Jia, and S. Jin, "Electromagnetic design and dynamic performance study of electrically excited brushless synchronous motor," 2013 International Conference on Electrical Machines and Systems (ICEMS), 699-702, Oct. 2013.
7. Chakraborty, C. and Y. T. Rao, "Performance of brushless induction excited synchronous generator," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 7, No. 4, 2571-2582, Dec. 2019.
8. Gorginpour, H., H. Oraee, and R. A. McMahon, "Electromagnetic-thermal design optimization of the brushless doubly fed induction generator," IEEE Trans. Ind. Electron., Vol. 61, No. 4, 1710-1721, Apr. 2014.
9. Hussain, A., S. Atiq, and B. Kwon, "Optimal design and experimental verification of wound rotor synchronous machine using subharmonic excitation for brushless operation," Energies, Vol. 11, No. 3, Art. No. 3, Mar. 2018.
10. Sun, L., X. Gao, F. Yao, Q. An, and T. Lipo, "A new type of harmonic current excited brushless synchronous machine based on an open winding pattern," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 2366-2373, Sep. 2014.
11. Usinin, Yu. S., M. A. Grigorjev, K. M. Vinogradov, and S. P. Gladyshev, "New brushless synchronous machine for vehicle application," SAE Trans., Vol. 116, 270-276, 2007.
12. Zhang, F., G. Jia, Y. Zhao, Z. Yang, W. Cao, and J. L. Kirtley, "Simulation and experimental analysis of a brushless electrically excited synchronous machine with a hybrid rotor," IEEE Trans. Magn., Vol. 51, No. 12, 1-7, Dec. 2015.
13. Long, Q., Z. Zhou, X. Lin, and J. Liao, "Investigation of a novel brushless electrically excited synchronous machine with arc-shaped rotor structure," Energy Rep., Vol. 6, 608-617, Dec. 2020.
14. Ali, Q., T. A. Lipo, and B.-I. Kwon, "Design and analysis of a novel brushless wound rotor synchronous machine," IEEE Trans. Magn., Vol. 51, No. 11, 1-4, Nov. 2015.
15. Yao, F., Q. An, L. Sun, and T. A. Lipo, "Performance investigation of a brushless synchronous machine with additional harmonic field windings," IEEE Trans. Ind. Electron., Vol. 63, No. 11, 6756-6766, Nov. 2016.
16. Spielmann, H. and H. E. Friedrich, "Method to optimize NVH-behaviour of a brushless electrically excited synchronous machine," 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 1-8, Apr. 2018.
17. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle," IEEE Trans. Veh. Technol., Vol. 68, No. 11, 10535-10544, Nov. 2019.
18. Salimi, A. and D. A. Lowther, "On the role of robustness in multi-objective robust optimization: Application to an IPM motor design problem," IEEE Trans. Magn., Vol. 52, No. 3, 1-4, Mar. 2016.
19. Sun, X., N. Xu, and M. Yao, "Sequential subspace optimization design of a dual three- phase permanent magnet synchronous hub motor based on NSGA III," IEEE Trans. Transp. Electrification, 1-1, 2022.
20. Shi, Z., X. Sun, G. Lei, X. Tian, Y. Guo, and J. Zhu, "Multiobjective optimization of a five-phase bearingless permanent magnet motor considering winding area," IEEE ASME Trans. Mechatron., 1-10, 2021.
21. Ma, B., G. Lei, C. Liu, J. Zhu, and Y. Guo, "Robust tolerance design optimization of a PM claw pole motor with soft magnetic composite cores," IEEE Trans. Magn., Vol. 54, No. 3, 1-4, Mar. 2018.
22. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential taguchi method," IEEE Trans. Ind. Electron., Vol. 68, No. 11, 10592-10600, 2021.
23. Liu, G., Y. Wang, Q. Chen, G. Xu, and C. Song, "Multiobjective deterministic and robust optimization design of a new spoke-type permanent magnet machine for the improvement of torque performance," IEEE Trans. Ind. Electron., Vol. 67, No. 12, 10202-10212, 2020.
24. Kim, K.-S., K.-T. Jung, J.-M. Kim, J.-P. Hong, and S.-I. Kim, "Taguchi robust optimum design for reducing the cogging torque of EPS motors considering magnetic unbalance caused by manufacturing tolerances of PM," IET Electr. Power Appl., Vol. 10, No. 9, 909-915, 2016.
25. Sun, X., Z. Shi, Y. Cai, G. Lei, Y. Guo, and J. Zhu, "Driving-cycle-oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle," IEEE Trans. Transp. Electrification, Vol. 6, No. 3, 1115-1125, Sep. 2020.
26. Lee, J.-G., N.-W. Hwang, H. Ryu, H.-K. Jung, and D.-K. Woo, "Robust optimization approach applied to permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, Jun. 2017.
27. Diao, K., X. Sun, G. Bramerdorfer, Y. Cai, G. Lei, and L. Chen, "Design optimization of switched reluctance machines for performance and reliability enhancements: A review," Renew. Sustain. Energy Rev., Vol. 168, 112785, Oct. 2022.
28. Jin, Z., X. Sun, L. Chen, and Z. Yang, "Robust multi-objective optimization of a 3-pole active magnetic bearing based on combined curves with climbing algorithm," IEEE Trans. Ind. Electron., Vol. 69, No. 6, 5491-5501, Jun. 2022.
29. Almansa Malagoli, J., J. R. Camacho, M. Valencia Ferreira da Luz, J. H. Inacio Ferreira, and A. Maximiano Sobrinho, "Design of three-phase induction machine using differential evolution algorithm," IEEE Lat. Am. Trans., Vol. 13, No. 7, 2202-2208, Jul. 2015.
30. Jolly, L., M. A. Jabbar, and L. Qinghua, "Design optimization of permanent magnet motors using response surface methodology and genetic algorithms," IEEE Trans. Magn., Vol. 41, No. 10, 3928-3930, 2005.
31. Lee, J. H., J.-W. Kim, J.-Y. Song, D.-W. Kim, Y.-J. Kim, and S.-Y. Jung, "Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, Jun. 2017.
32. Sim, D.-J., D.-H. Cho, J.-S. Chun, H.-K. Jung, and T.-K. Chung, "Efficiency optimization of interior permanent magnet synchronous motor using genetic algorithms," IEEE Trans. Magn., Vol. 33, No. 2, 1880-1883, Mar. 1997.
33. Bokose, F. L., L. Vandevelde, and J. A. A. Melkebeek, "Sequential approximate multiobjective optimisation of switched reluctance motor design using surrogate models and nongradient local search algorithm," IEE Proc. --- Sci. Meas. Technol., Vol. 151, No. 6, 471-475, Nov. 2004.
34. Xia, B., M.-T. Pham, Y. Zhang, and C.-S. Koh, "A global optimization algorithm for electromagnetic devices by combining adaptive taylor kriging and particle swarm optimization," IEEE Trans. Magn., Vol. 49, No. 5, 2061-2064, 2013.
35. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Trans. Ind. Electron., Vol. 68, No. 1, 139-148, Jan. 2021.
36. Sun, X., Z. Shi, and J. Zhu, "Multi-objective design optimization of an IPMSM for EVs based on fuzzy method and sequential taguchi method," IEEE Trans. Ind. Electron., Vol. 68, No. 11, 10592-10600, 2021.
37. Si, J., S. Zhao, H. Feng, R. Cao, and Y. Hu, "Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method," Chin. J. Electr. Eng., Vol. 4, No. 1, 67-73, Mar. 2018.
38. Shi, Z. and X. Sun, "Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method," IEEE Trans. Energy Convers., Vol. 35, No. 4, 9, 2020.
39. Croux, C. and C. Dehon, "Influence functions of the Spearman and Kendall correlation measures," Stat. Methods Appl., Vol. 19, No. 4, 497-515, Nov. 2010.
40. Lebensztajn, L., C. A. R. Marretto, M. C. Costa, and J.-L. Coulomb, "Kriging: A useful tool for electromagnetic device optimization," IEEE Trans. Magn., Vol. 40, No. 2, 1196-1199, Mar. 2004.
41. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., Vol. 6, No. 2, 182-197, Apr. 2002.
42. Shi, Z., X. Sun, G. Lei, Z. Yang, Y. Guo, and J. Zhu, "Analysis and optimization of radial force of permanent-magnet synchronous hub motors," IEEE Trans. Magn., Vol. 56, No. 2, 1-4, 2020.
43. Sun, Q., W. Zhang, and Q. Wang, "Fundamental design and analysis of a novel bipolar transverse-flux motor with stator permanent-magnet excitation," Chin. J. Electr. Eng., Vol. 4, No. 1, 60-66, Mar. 2018.