Vol. 126
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-11
Analysis and Optimization of a Novel Consequent-Pole Flux Reversal Machine with Asymmetric-Stator-Poles
By
Progress In Electromagnetics Research C, Vol. 126, 217-226, 2022
Abstract
Flux reversal machines (FRMs) have a broad application prospect due to its simple structure, high efficiency, and high reliability. However, due to the large magnetic flux leakage between poles, the further improvement of torque density of the FRMsis limited. To reduce magnetic flux leakage and improve torque, a novel consequent pole FRM with asymmetric stator poles is proposed in this paper. The `NS-NS' arrangement order of thepermanent magnets (PMs) of the conventional FRM is changed to the `NSN-S' PMs arrangement order with asymmetric stator poles, and the consequent pole topology is used simultaneously. All the N-poles of PMs are replaced by iron poles. Finally, the topology of the `Fe/S/Fe-S' arrangement order is obtained. A simplified magnetic circuit model is established to explain the principle of reducing magnetic flux leakage. To improve the torque density, the key design parameters are optimized by genetic algorithm, and the optimal parameters of the machine are finally determined. Finally, the finite element model is established. Compared with the conventional FRM, the torque of the proposed machine is increased by 67.18%, and the consumption of PM is reduced by 51.6%. Therefore, the proposed machine has good electromagnetic characteristics and economic benefits.
Citation
Libing Jing, and Kun Yang, "Analysis and Optimization of a Novel Consequent-Pole Flux Reversal Machine with Asymmetric-Stator-Poles," Progress In Electromagnetics Research C, Vol. 126, 217-226, 2022.
doi:10.2528/PIERC22090803
References

1. Cheng, M., W. Hua, J. Zhang, and W. Zhao, "Overview of stator-permanent magnet brushless machines," IEEE Trans. Ind. Electron., Vol. 58, No. 11, 5087-5101, Nov. 2011.
doi:10.1109/TIE.2011.2123853

2. Gao, Y., D. Li, R. Qu, X. Fan, J. Li, and H. Ding, "A novel hybrid excitation flux reversal machine for electric vehicle propulsion," IEEE Trans. Veh. Technol., Vol. 67, No. 1, 171-182, Jan. 2018.
doi:10.1109/TVT.2017.2750206

3. Gao, Y., R. Qu, D. Li, and J. Li, "Torque performance analysis of three-phase flux reversal machines," IEEE Trans. Ind. Appl., Vol. 53, No. 3, 2110-2119, 2017.
doi:10.1109/TIA.2017.2677356

4. Hua, W., X. Zhu, and Z.Wu, "Influence of coil pitch and stator-slot/rotor-pole combination on back EMF harmonics in flux-reversal permanent magnet machines," IEEE Trans. Energy Conversion., Vol. 33, No. 3, 1330-1341, 2018.
doi:10.1109/TEC.2018.2795000

5. Zhu, X., W. Hua, W. Wang, and W. Huang, "Analysis of back-EMF in flux-reversal permanent magnet machines by air gap field modulation theory," IEEE Trans. Ind. Electron., Vol. 66, No. 5, 3344-3355, 2019.
doi:10.1109/TIE.2018.2854575

6. Li, H. and Z. Zhu, "Optimal number of magnet pieces of flux reversal permanent magnet machines," IEEE Trans. Energy Convers., Vol. 34, No. 2, 889-898, 2019.
doi:10.1109/TEC.2018.2866765

7. Li, D., Y. Gao, R. Qu, J. Li, Y. Huo, and H. Ding, "Design and analysis of a flux reversal machine with evenly distributed permanent magnets," IEEE Trans. Ind. Appl., Vol. 54, No. 1, 172-183, 2018.
doi:10.1109/TIA.2017.2750998

8. Xie, K., D. Li, R. Qu, Z. Yu, Y. Gao, and Y. Pan, "Analysis of a flux reversal machine with quasi-halbach magnets in stator slot opening," IEEE Trans. Ind. Appl., Vol. 55, No. 2, 1250-1260, 2019.
doi:10.1109/TIA.2018.2873540

9. Qu, H., Z. Zhu, H. Li, and , "Analysis of novel consequent pole flux reversal permanent magnet machines," IEEE Trans. Ind. Appl., Vol. 57, No. 1, 382-396, Jan. 2021.
doi:10.1109/TIA.2020.3036328

10. Yang, H., H. Lin, Z. Zhu, S. Lyu, and Y. Liu, "Design and analysis of novel asymmetric-stator-pole flux reversal pm machine," IEEE Trans. Ind. Electron., Vol. 67, No. 1, 101-114, 2020.
doi:10.1109/TIE.2019.2896097

11. Li, H., Z. Zhu, and H. Hua, "Comparative analysis of flux reversal permanent magnet machines with toroidal and concentrated windings," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 5278-5290, 2020.
doi:10.1109/TIE.2019.2934064

12. Qu, H. and Z. Zhu, "Analysis of spoke array permanent magnet flux reversal machines," IEEE Trans. Energy Convers., Vol. 35, No. 3, 1688-1696, 2020.
doi:10.1109/TEC.2020.2986948

13. Wu, L., Y. Zheng, Y. Fang, and X. Huang, "Novel fault-tolerant doubly fed flux reversal machine with armature windings wound on both stator and rotor teeth," IEEE Trans. Ind. Electron., Vol. 68, No. 6, 4780-4789, 2021.
doi:10.1109/TIE.2020.2989721

14. Zheng, Y., L. Wu, J. Zhu, Y. Fang, and L. Qiu, "Analysis of dual-armature flux reversal permanent magnet machines with Halbach array magnets," IEEE Trans. Energy Convers., Vol. 36, No. 4, 3044-3052, 2021.
doi:10.1109/TEC.2021.3070039

15. Gao, Y., D. Li, R. Qu, and J. Li, "Design procedure of flux reversal permanent magnet machines," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4232-4241, Sep.-Oct. 2017.
doi:10.1109/TIA.2017.2695980

16. Gao, Y., R. Qu, D. Li, J. Li, and L. Wu, "Design of three-phase flux-reversal machines with fractional-slot windings," IEEE Trans. Ind. Appl., Vol. 52, No. 4, 2856-2864, 2016.
doi:10.1109/TIA.2016.2535108

17. Liu, G., Z. Ma, H. Zhu, J. Sun, and J. Huan, "Multi-objective optimization and analysis of six-pole outer rotor hybrid magnetic bearing," Progress In Electromagnetics Research C, Vol. 119, 97-114, 2022.
doi:10.2528/PIERC22010601

18. Jing, L., W. Tang, W. Liu, Y. Rao, C. Tan, and R. Qu, "A double-stator single-rotor magnetic field modulated motor with HTS bulks," IEEE Trans. Appl. Supercond, Vol. 32, No. 6, 1-5, 2022.

19. Tang, W., L. Jing, and L. Zheng, "A diesel-electric hybrid field modulation motor with bread-loaf eccentric magnetic pole for ship propulsion," Progress In Electromagnetics Research C, Vol. 125, 147-159, 2022.
doi:10.2528/PIERC22061602

20. Zhou, X., X. Zhu, W. Wu, Z. Xiang, Y. Liu, and L. Quan, "Multi-objective optimization design of variable-saliency-ratio PM motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 68, No. 8, 6516-6526, Aug. 2021.
doi:10.1109/TIE.2020.3007106