Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-26
Improved Design of W-Band Slot Array Antenna Based on Rectangular Micro Coaxial Line
By
Progress In Electromagnetics Research Letters, Vol. 109, 1-7, 2023
Abstract
This paper proposes an improved design of a W-band slot array antenna, based on a ridge waveguide and a rectangular micro-coaxial line. To achieve a high gain and wideband antenna with element spacing smaller than half a wavelength, a broadband transition of rectangular coaxial line to ridge waveguide was designed. The improved design has bandwidth around 15.4 GHz (94.8 GHz-110.2 GHz), and the simulated realized gain is about 14.6 dB. Measured results of the fabricated antenna demonstrate that the gain at theta = 0°, and VSWR is better than 13 dB and 2.7, respectively. The antenna's size is about 12 mm × 5.5 mm × 0.46 mm.
Citation
Hao Wei, Hao Wei, Yuan Zhou, Minjie Shu, and Anxue Zhang, "Improved Design of W-Band Slot Array Antenna Based on Rectangular Micro Coaxial Line," Progress In Electromagnetics Research Letters, Vol. 109, 1-7, 2023.
doi:10.2528/PIERL22100104
References

1. Omar, Y. A. and C. F. Miller, "Characteristic impedance of rectangular coaxial transmission lines," Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, Vol. 71, No. 1, 81-89, Jan. 1952, doi: 10.1109/TCE.1952.6371891.
doi:10.1109/TCE.1952.6371891

2. Xiong, Y. Z., H. Liao, J. Shi, and S. C. Rustagi, "Characterizations of rectangular coaxial line fabricated on silicon substrate," 2002 32nd European Microwave Conference, 1-4, 2002, doi: 10.1109/EUMA.2002.339429.

3. Wu, Z., A. Zhang, J. Chen, et al. "Microfabrication of coaxial filter without internal conductor support," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

4. Ehsan, N., K. Vanhille, S. Rondineau, et al. "Broadband micro-coaxial Wilkinson dividers," IEEE Transactions on Microwave Theory & Techniques, Vol. 57, No. 11, 2783-2789, 2009.
doi:10.1109/TMTT.2009.2032345

5. Shu, M., W. Liu, J. Li, Y. Cao, C. Guo, and A. Zhang, "W-band waveguide slot array antenna with high gain based on rectangular micro-coaxial process," 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), 379-381, 2021, doi: 10.1109/ICEICT53123.2021.9531187.
doi:10.1109/ICEICT53123.2021.9531187

6. Li, X., H. Zhu, N. Li, B. Ai, Y. Tian, and H. Wang, "Surface micro-machined wideband circularly polarized antenna array for 60 GHz radios," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, 1165-1168, 2014.
doi:10.1109/APCAP.2014.6992720

7. Popovic, Z., "Micro-coaxial micro-fabricated feeds for phased array antennas," 2010 IEEE International Symposium on Phased Array Systems and Technology, 1-10, 2010.