Vol. 108
Latest Volume
All Volumes
PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-12-11
A Compact Ultra-Wide Band Antenna with a Notched Band for Wireless Communication Systems
By
Progress In Electromagnetics Research Letters, Vol. 108, 31-39, 2023
Abstract
An ultra-wide band (UWB) antenna with C-band and X-band notches for wireless communication is presented. The designed structure is printed on a material of ``Rogers 4350B'' with εr = 3.66, tanδ = 0.0037 and a thickness of 0.508 mm. This structure is designed to operate at a UWB range starting from 3.3 GHz up to 10.15 GHz with a stopband range from 6.75 GHz to 8.5 GHz. The rejected bands are the upper C-band (6.75 GHz-8 GHz) and the uplink X-band of the satellite (space to earth) from 7.25 GHz to 7.75 GHz. The overall antenna size is optimized, and its dimensions are 21 × 30 × 0.508 mm3. The antenna gain varies from 2.1 to 4.2 dBi at the passband, and its total radiation efficiency is 96.4%. The suggested structure is designed and simulated using CSTMWS software. Moreover, a prototype of the proposed structure is fabricated and measured. The fabrication process was done using photolithography techniques, and the measurements were done using an R&S vector network analyzer. Good agreement is achieved between the simulated and measured results.
Citation
Basma M. Yousef Allam M. Ameen Bassant H. El Swiefy Reham Arnous , "A Compact Ultra-Wide Band Antenna with a Notched Band for Wireless Communication Systems," Progress In Electromagnetics Research Letters, Vol. 108, 31-39, 2023.
doi:10.2528/PIERL22101503
http://www.jpier.org/PIERL/pier.php?paper=22101503
References

1. Kaur, K., A. Kumar, and N. Sharma, "A review of ultra wideband antennas with band notched characteristics," Proceedings of the International Conference on Innovative Computing & Communications (ICICC), March 2020.

2. Mullick, T. U., M. E. Ershad, M. A. Matin, and A. Rahman, "Design of UWB antenna with a band-notch at 5 GHz," Loughborough Antennas & Propagation Conference (LAPC), 1-4, 2012.

3. Liu, H., C. Ku, T. Wang, and C. Yang, "Compact monopole antenna with band-notched characteristic for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 397-400, 2010.
doi:10.1109/LAWP.2010.2049633

4. Madany, Y. M., A. I. Almahallawy, and H. M. Elkamchouchi, "Methodology of band rejection/addition for microstrip antennas design using slot line theory and current distribution analysis," 2014 Loughborough Antennas and Propagation Conference (LAPC), 602-606, IEEE, 2014.
doi:10.1109/LAPC.2014.6996464

5. Goyal, P., "UWB antenna with dual notch functionality for reducing VSWR," Journal of Adv Research in Dynamical & Control Systems, Vol. 12, No. 3, 91-96, 2020.
doi:10.5373/JARDCS/V12I3/20201170

6. Moradi, N., F. Nazari, H. Aliakbarian, and F. A. Namin, "Compact ultrawideband monopole antenna with continuously tunable notch band characteristics," Progress In Electromagnetics Research C, Vol. 118, 71-81, 2022.
doi:10.2528/PIERC21120207

7. Wang, X. and Y. Sun, "Ultra-wideband MIMO antenna with double notched band," Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, 2020.

8. Alotaibi, S. and A. Alotaibi, "Design of a planar tri-band notch UWB antenna for X-band, WLAN, and WiMAX engineering," Technology & Applied Science Research, Vol. 10, 6557-6562, 2020.
doi:10.48084/etasr.3904

9. Rashid, M. A., S. M. Shah, H. Majid, A. Ponniran, and F. Hassan, "A highly miniaturized ultra-wideband antenna with a triple-band notch for wearable applications," International Journal of Electrical and Electronic Engineering & Telecommunications, 74-81, 2022.
doi:10.18178/ijeetc.11.1.74-81

10. Khan, M., "Design and analysis of a compact UWB band notch antenna for wireless communication," Engineering Proceedings, Vol. 3, 2020.

11. Karanam, P., A. Tejasri, K. Sandeep, U. Kumar, and G. Swarupa, "Design of UWB antenna with WLAN & X-band notch for wireless communication," Design of UWB antenna with WLAN & X-band notch for wireless communication, Vol. 7, 484-488, 2018.