Vol. 109
Latest Volume
All Volumes
2023-02-28
A Wide-Band High Isolation Dual-Circularly Polarized Microstrip Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 109, 49-56, 2023
Abstract
A wide-band dual-circularly polarized transceiver antenna with high port isolation is proposed in this paper. The antenna element uses M-shaped and U-shaped microstrip lines to excite the quasi-cross-shaped aperture to achieve wide-band and lower cross-polarization level. Dual-circular polarization is accomplished via the sequential rotation technique. To obtain high port isolation of the antenna, phase cancellation technique and decoupling structure are utilized. The measurements show that the impedance bandwidth with reflection coefficient less than -10 dB is larger than 34.5% (4.6-6.5 GHz) for left-hand circular polarization (LHCP) port and 29.8% (4.86-6.5 GHz) for right-hand circular polarization (RHCP) port, while the 3 dB axial ratio bandwidth for LHCP and RHCP is greater than 29.1% (4.8-6.4 GHz) and 32.7% (4.7-6.5 GHz), respectively. The port isolation of the antenna is higher than 30 dB in 4.5-6.5 GHz band. The peak gain is about 12 dBic.
Citation
Shiqiang Fu, Pengfei Liang, Chanjuan Li, and Zhongbao Wang, "A Wide-Band High Isolation Dual-Circularly Polarized Microstrip Antenna Array," Progress In Electromagnetics Research Letters, Vol. 109, 49-56, 2023.
doi:10.2528/PIERL22112601
References

1. Li, C., Peng. Z., Huang. T., Fan. T., Wang. F., Horng. T., J. Munoz-Ferreras. J., Gomez-Garca, R., Ran. L., and Lin. J., "A review on recent progress of portable short-range noncontact microwave radar systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1692-1706, 2017.
doi:10.1109/TMTT.2017.2650911

2. Venon, A., Y. Dupuis, P. Vasseur, and P. Merriaux, "Millimeter wave FMCW RADARs for perception, recognition and localization in automotive applications: A survey," IEEE Transactions on Intelligent Vehicles, Vol. 7, No. 3, 533-555, 2022.
doi:10.1109/TIV.2022.3167733

3. Zhang, Z., Z. Tian, and M. Zhou, "Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor," IEEE Sensors Journal, Vol. 18, No. 8, 3278-3289, 2018.
doi:10.1109/JSEN.2018.2808688

4. Wang, G., J. -M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez-Garcia, "Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 6, 1387-1399, 2014.
doi:10.1109/TMTT.2014.2320464

5. Zhou, Z., Y. Li, J. Hu, Y. He, Z. Zhang, and P.-Y. Chen, "Monostatic copolarized simultaneous transmit and receive (STAR) antenna by integrated single-layer design," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 472-476, 2019.
doi:10.1109/LAWP.2019.2894418

6. Wu, D., Y.-X. Sun, B. Wang, and R. Lian, "A compact, monostatic, co-circularly polarized simultaneous transmit and receive (STAR) antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1127-1131, 2020.
doi:10.1109/LAWP.2020.2991182

7. Liu, Y., Z. Yue, Y. Jia, Y. Xu, and Q. Xue, "Dual-band dual-circularly polarized antenna array with printed ridge gap waveguide," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5118-5123, 2021.
doi:10.1109/TAP.2020.3048504

8. Lei, H., Y. Liu, Y. Jia, Z. Yue, and X. Wang, "A low-profile dual-band dual-circularly polarized folded transmitarray antenna with independent beam control," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 5, 3852-3857, 2022.
doi:10.1109/TAP.2021.3125419

9. Liang, Z.-X., D.-C. Yang, X.-C. Wei, and E.-P. Li, "Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 834-837, 2016.
doi:10.1109/LAWP.2015.2476505

10. Yan, Y.-D., Y.-C. Jiao, H.-T. Cheng, and C. Zhang, "A low-profile dual-circularly polarized wide-axial-ratio-beamwidth slot patch antenna with six-port feeding network," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 12, 2486-2490, 2021.
doi:10.1109/LAWP.2021.3115802

11. Wu, J., W. Yang, L. Gu, Q. Xue, and W. Che, "Low-profile wide-band dual-circularly polarized metasurface antenna based on traveling-wave sequential feeding mechanism," IEEE Antennas and Wireless Propagation Letters, Vol. 21, 1085-1089, 2022.
doi:10.1109/LAWP.2022.3157039

12. Mao, C.-X., S. S. Gao, Y. Wang, and J. T. Sri Sumantyo, "Compact broadband dual-sense circularly polarized microstrip antenna/array with enhanced isolation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7073-7082, 2017.
doi:10.1109/TAP.2017.2766440

13. He, Y., C. Gu, H. Ma, J. Zhu, and G. V. Eleftheriades, "Miniaturized circularly polarized doppler radar for human vital sign detection," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7022-7030, 2019.
doi:10.1109/TAP.2019.2927777

14. Lu, J., Z. Shao, C. Li, C. Gu, and J. Mao, "A portable 5.8 GHz dual circularly polarized interferometric radar sensor for short-range motion sensing," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5849-5859, 2022.
doi:10.1109/TAP.2022.3142303

15. Li, H., L. Kang, F. Wei, Y.-M. Cai, and Y.-Z. Yin, "A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3022-3025, 2017.
doi:10.1109/LAWP.2017.2758520

16. Lu, J., Z. Kuai, X. Zhu, and N. Zhang, "A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2713-2717, 2011.
doi:10.1109/TAP.2011.2152333

17. Chen, Z., L. Mei, L. Guo, Z. Wu, and M. Tang, "Isolation enhancement for wideband, circularly/dual-polarized, high-density patch arrays using planar parasitic resonators," IEEE Access, Vol. 7, 112249-112257, 2019.
doi:10.1109/ACCESS.2019.2934156

18. Ta, S., V. Nguyen, B. Nguyen-Thi, T. Hoang, A. Nguyen, K. Nguyen, and C. Dao-Ngoc, "Wideband dual-circularly polarized antennas using aperture-coupled stacked patches and single-Section hybrid coupler," IEEE Access, Vol. 10, 21883-21891, 2022.
doi:10.1109/ACCESS.2022.3155120