Vol. 109
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-02-28
A Wide-Band High Isolation Dual-Circularly Polarized Microstrip Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 109, 49-56, 2023
Abstract
A wide-band dual-circularly polarized transceiver antenna with high port isolation is proposed in this paper. The antenna element uses M-shaped and U-shaped microstrip lines to excite the quasi-cross-shaped aperture to achieve wide-band and lower cross-polarization level. Dual-circular polarization is accomplished via the sequential rotation technique. To obtain high port isolation of the antenna, phase cancellation technique and decoupling structure are utilized. The measurements show that the impedance bandwidth with reflection coefficient less than -10 dB is larger than 34.5% (4.6-6.5 GHz) for left-hand circular polarization (LHCP) port and 29.8% (4.86-6.5 GHz) for right-hand circular polarization (RHCP) port, while the 3 dB axial ratio bandwidth for LHCP and RHCP is greater than 29.1% (4.8-6.4 GHz) and 32.7% (4.7-6.5 GHz), respectively. The port isolation of the antenna is higher than 30 dB in 4.5-6.5 GHz band. The peak gain is about 12 dBic.
Citation
Shiqiang Fu, Pengfei Liang, Chanjuan Li, and Zhongbao Wang, "A Wide-Band High Isolation Dual-Circularly Polarized Microstrip Antenna Array," Progress In Electromagnetics Research Letters, Vol. 109, 49-56, 2023.
doi:10.2528/PIERL22112601
References

1. Li, C., Peng. Z., Huang. T., Fan. T., Wang. F., Horng. T., J. Munoz-Ferreras. J., Gomez-Garca, R., Ran. L., and Lin. J., "A review on recent progress of portable short-range noncontact microwave radar systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1692-1706, 2017.
doi:10.1109/TMTT.2017.2650911

2. Venon, A., Y. Dupuis, P. Vasseur, and P. Merriaux, "Millimeter wave FMCW RADARs for perception, recognition and localization in automotive applications: A survey," IEEE Transactions on Intelligent Vehicles, Vol. 7, No. 3, 533-555, 2022.
doi:10.1109/TIV.2022.3167733

3. Zhang, Z., Z. Tian, and M. Zhou, "Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor," IEEE Sensors Journal, Vol. 18, No. 8, 3278-3289, 2018.
doi:10.1109/JSEN.2018.2808688

4. Wang, G., J. -M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez-Garcia, "Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 6, 1387-1399, 2014.
doi:10.1109/TMTT.2014.2320464

5. Zhou, Z., Y. Li, J. Hu, Y. He, Z. Zhang, and P.-Y. Chen, "Monostatic copolarized simultaneous transmit and receive (STAR) antenna by integrated single-layer design," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 472-476, 2019.
doi:10.1109/LAWP.2019.2894418

6. Wu, D., Y.-X. Sun, B. Wang, and R. Lian, "A compact, monostatic, co-circularly polarized simultaneous transmit and receive (STAR) antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1127-1131, 2020.
doi:10.1109/LAWP.2020.2991182

7. Liu, Y., Z. Yue, Y. Jia, Y. Xu, and Q. Xue, "Dual-band dual-circularly polarized antenna array with printed ridge gap waveguide," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 5118-5123, 2021.
doi:10.1109/TAP.2020.3048504

8. Lei, H., Y. Liu, Y. Jia, Z. Yue, and X. Wang, "A low-profile dual-band dual-circularly polarized folded transmitarray antenna with independent beam control," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 5, 3852-3857, 2022.
doi:10.1109/TAP.2021.3125419

9. Liang, Z.-X., D.-C. Yang, X.-C. Wei, and E.-P. Li, "Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 834-837, 2016.
doi:10.1109/LAWP.2015.2476505

10. Yan, Y.-D., Y.-C. Jiao, H.-T. Cheng, and C. Zhang, "A low-profile dual-circularly polarized wide-axial-ratio-beamwidth slot patch antenna with six-port feeding network," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 12, 2486-2490, 2021.
doi:10.1109/LAWP.2021.3115802

11. Wu, J., W. Yang, L. Gu, Q. Xue, and W. Che, "Low-profile wide-band dual-circularly polarized metasurface antenna based on traveling-wave sequential feeding mechanism," IEEE Antennas and Wireless Propagation Letters, Vol. 21, 1085-1089, 2022.
doi:10.1109/LAWP.2022.3157039

12. Mao, C.-X., S. S. Gao, Y. Wang, and J. T. Sri Sumantyo, "Compact broadband dual-sense circularly polarized microstrip antenna/array with enhanced isolation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7073-7082, 2017.
doi:10.1109/TAP.2017.2766440

13. He, Y., C. Gu, H. Ma, J. Zhu, and G. V. Eleftheriades, "Miniaturized circularly polarized doppler radar for human vital sign detection," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7022-7030, 2019.
doi:10.1109/TAP.2019.2927777

14. Lu, J., Z. Shao, C. Li, C. Gu, and J. Mao, "A portable 5.8 GHz dual circularly polarized interferometric radar sensor for short-range motion sensing," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5849-5859, 2022.
doi:10.1109/TAP.2022.3142303

15. Li, H., L. Kang, F. Wei, Y.-M. Cai, and Y.-Z. Yin, "A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3022-3025, 2017.
doi:10.1109/LAWP.2017.2758520

16. Lu, J., Z. Kuai, X. Zhu, and N. Zhang, "A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2713-2717, 2011.
doi:10.1109/TAP.2011.2152333

17. Chen, Z., L. Mei, L. Guo, Z. Wu, and M. Tang, "Isolation enhancement for wideband, circularly/dual-polarized, high-density patch arrays using planar parasitic resonators," IEEE Access, Vol. 7, 112249-112257, 2019.
doi:10.1109/ACCESS.2019.2934156

18. Ta, S., V. Nguyen, B. Nguyen-Thi, T. Hoang, A. Nguyen, K. Nguyen, and C. Dao-Ngoc, "Wideband dual-circularly polarized antennas using aperture-coupled stacked patches and single-Section hybrid coupler," IEEE Access, Vol. 10, 21883-21891, 2022.
doi:10.1109/ACCESS.2022.3155120