1. Wang, K., E. Kedze, and I. Park, "A high-gain and wideband series-fed angled printed dipole array antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5708-5713, Jul. 2020.
doi:10.1109/TAP.2020.2975882 Google Scholar
2. Wong, K., H. Chang, C. Wang, and S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 213-217, Jan. 2020.
doi:10.1109/LAWP.2019.2958961 Google Scholar
3. Wang, Z., J. Liu, and Y. Long, "A simple wide-bandwidth and high-gain microstrip patch antenna with both sides shorted," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1144-1148, Jun. 2019.
doi:10.1109/LAWP.2019.2911045 Google Scholar
4. Samson Daniel, R., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 83, 88-94, 2018. Google Scholar
5. Alam, T., M. Samsuzzaman, M. R. I. Faruque, and M. T. Islam, "A metamaterial unit cell inspired antenna for mobile wireless applications," Microwave and Optical Technology Letters, Vol. 58, 263-267, 2016.
doi:10.1002/mop.29543 Google Scholar
6. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113 Google Scholar
7. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969 Google Scholar
8. Behera, P. and S. S. Behera, "Compact multiband monopole antenna with complementary split ring resonator for WLAN and WIMAX applications," NCRAEEE Conference Proceedings, International Journal of Engineering & Technology (IJERT), 2015. Google Scholar
9. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317 Google Scholar
10. Cao, F., S. W. Cheung, and T. I. Yuk, "A multi-band slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagations, Vol. 63, 952-958, Mar. 2015.
doi:10.1109/TAP.2015.2389219 Google Scholar
11. Moniruzzaman, M., M. T. Islam, N. Misran, et al. "Inductively tuned modified split ring resonator based quad band epsilon negative (ENG) with near zero index (NZI) metamaterial for multiband antenna performance enhancement," Sci. Rep., Vol. 11, 11950, 2021.
doi:10.1038/s41598-021-91432-8 Google Scholar
12. Afsar, S. U., M. R. I. Faruque, M. J. Hossain, M. U. Khandaker, H. Osman, and S. Alamri, "Modified Hexagonal split ring resonator based on an epsilon-negative metamaterial for triple-band satellite communication," Micromachines, Vol. 12, 878, 2021.
doi:10.3390/mi12080878 Google Scholar
13. Shahidul Islam, M., M. Samsuzzaman, G. K. Beng, N. Misran, N. Amin, and M. T. Islam, "A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications," IEEE Access, Vol. 8, No. 8, 68239-68253, 2020.
doi:10.1109/ACCESS.2020.2985845 Google Scholar
14. Islam, M. R., M. Samsuzzaman, N. Misran, G. K. Beng, and M. T. Islam, "A tri-band left-handed meta-atom enabled designed with a high effective medium ratio for microwave-based applications," Results Phys., Vol. 17, 103032, Jun. 2020.
doi:10.1016/j.rinp.2020.103032 Google Scholar
15. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.
16. Li, L., Z. Jia, F. Huo, and W. Han, "A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1688-1691, 2013.
doi:10.1109/LAWP.2013.2295915 Google Scholar
17. Basaran, S., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
doi:10.1049/el.2013.0357 Google Scholar
18. Sarkar, D., K. Saurav, and K. Srivastava, "Multi-band microstrip-fed slot antenna loaded with a split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
doi:10.1049/el.2014.2625 Google Scholar
19. Behera, S. S. and S. Sahu, "Frequency reconfigurable antenna inspired by metamaterial for WLAN and WiMAX application," 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), 442-446, 2014.
doi:10.1109/ICSPCT.2014.6884952 Google Scholar
20. Dakhli, N. and F. Choubani, "Dual band metamaterial inverted-L antenna," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, 2019. Google Scholar
21. Mishra, A., M. Ameen, and R. K. Chaudhary, "A compact triple band metamaterial inspired antenna using SRR and Hexagonal stub for UMTS, WLAN, and WiMAX applications in S/C bands," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, 2019. Google Scholar
22. Thankachan, S. and B. Paul, "A compact metamaterial inspired CPW fed multiband monopole antenna for wireless applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 427-428, 2020.
doi:10.1109/IEEECONF35879.2020.9329799 Google Scholar