Vol. 128
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-17
Compact Metamaterial Loaded Wideband Monopole Antenna for Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 128, 247-261, 2023
Abstract
A compact metamaterial-loaded wideband monopole antenna is reported in this paper for wireless applications. Initially, a monopole antenna with a single stub was designed to resonate at 4 GHz. Still, it suffers from low gain, so to enhance the antenna parameters, a metamaterial unit cell was considered along the feed line and ground plane. Double split ring resonator (DSRR) is a modified unit cell of a typical split ring resonator (SRR) designed to achieve a good coupling effect. The dimensions of the proposed DSRR unit cell are 0.17λ0 × 0.17λ0, where λ0 is the free space wavelength at 4 GHz. It achieved an impedance bandwidth (-10 dB) in the frequency range of 3.38 GHz to 4.08 GHz & 4.64 GHz to 5.2 GHz, having a 19.49% bandwidth in the 1st band and 11.7% bandwidth in the 2nd band. A wideband was achieved in the frequency range of 3.39 GHz to 5.13 GHz with 47.9% bandwidth when the number of stubs was increased to four. A maximum gain of 3.3 dBi was attained with bidirectional radiation in the E-plane, and it was omnidirectional in the H-plane. By increasing the number of stubs, two resonant modes were merged, making it wideband and suitable for WLAN applications like Wi-Fi & WiMAX & Satellite Communications.
Citation
Shaik Abdul Khadar, and Sudhakar Sahu, "Compact Metamaterial Loaded Wideband Monopole Antenna for Wireless Applications," Progress In Electromagnetics Research C, Vol. 128, 247-261, 2023.
doi:10.2528/PIERC22120106
References

1. Wang, K., E. Kedze, and I. Park, "A high-gain and wideband series-fed angled printed dipole array antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5708-5713, Jul. 2020.
doi:10.1109/TAP.2020.2975882

2. Wong, K., H. Chang, C. Wang, and S. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 213-217, Jan. 2020.
doi:10.1109/LAWP.2019.2958961

3. Wang, Z., J. Liu, and Y. Long, "A simple wide-bandwidth and high-gain microstrip patch antenna with both sides shorted," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1144-1148, Jun. 2019.
doi:10.1109/LAWP.2019.2911045

4. Samson Daniel, R., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 83, 88-94, 2018.

5. Alam, T., M. Samsuzzaman, M. R. I. Faruque, and M. T. Islam, "A metamaterial unit cell inspired antenna for mobile wireless applications," Microwave and Optical Technology Letters, Vol. 58, 263-267, 2016.
doi:10.1002/mop.29543

6. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113

7. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969

8. Behera, P. and S. S. Behera, "Compact multiband monopole antenna with complementary split ring resonator for WLAN and WIMAX applications," NCRAEEE Conference Proceedings, International Journal of Engineering & Technology (IJERT), 2015.

9. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

10. Cao, F., S. W. Cheung, and T. I. Yuk, "A multi-band slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagations, Vol. 63, 952-958, Mar. 2015.
doi:10.1109/TAP.2015.2389219

11. Moniruzzaman, M., M. T. Islam, N. Misran, et al. "Inductively tuned modified split ring resonator based quad band epsilon negative (ENG) with near zero index (NZI) metamaterial for multiband antenna performance enhancement," Sci. Rep., Vol. 11, 11950, 2021.
doi:10.1038/s41598-021-91432-8

12. Afsar, S. U., M. R. I. Faruque, M. J. Hossain, M. U. Khandaker, H. Osman, and S. Alamri, "Modified Hexagonal split ring resonator based on an epsilon-negative metamaterial for triple-band satellite communication," Micromachines, Vol. 12, 878, 2021.
doi:10.3390/mi12080878

13. Shahidul Islam, M., M. Samsuzzaman, G. K. Beng, N. Misran, N. Amin, and M. T. Islam, "A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications," IEEE Access, Vol. 8, No. 8, 68239-68253, 2020.
doi:10.1109/ACCESS.2020.2985845

14. Islam, M. R., M. Samsuzzaman, N. Misran, G. K. Beng, and M. T. Islam, "A tri-band left-handed meta-atom enabled designed with a high effective medium ratio for microwave-based applications," Results Phys., Vol. 17, 103032, Jun. 2020.
doi:10.1016/j.rinp.2020.103032

15. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.

16. Li, L., Z. Jia, F. Huo, and W. Han, "A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1688-1691, 2013.
doi:10.1109/LAWP.2013.2295915

17. Basaran, S., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
doi:10.1049/el.2013.0357

18. Sarkar, D., K. Saurav, and K. Srivastava, "Multi-band microstrip-fed slot antenna loaded with a split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
doi:10.1049/el.2014.2625

19. Behera, S. S. and S. Sahu, "Frequency reconfigurable antenna inspired by metamaterial for WLAN and WiMAX application," 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), 442-446, 2014.
doi:10.1109/ICSPCT.2014.6884952

20. Dakhli, N. and F. Choubani, "Dual band metamaterial inverted-L antenna," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, 2019.

21. Mishra, A., M. Ameen, and R. K. Chaudhary, "A compact triple band metamaterial inspired antenna using SRR and Hexagonal stub for UMTS, WLAN, and WiMAX applications in S/C bands," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, 2019.

22. Thankachan, S. and B. Paul, "A compact metamaterial inspired CPW fed multiband monopole antenna for wireless applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 427-428, 2020.
doi:10.1109/IEEECONF35879.2020.9329799