Vol. 110
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-25
Performance Optimization of Optical Access Networks Using Two Optical Amplifiers EYDWA and SOA in Cascade
By
Progress In Electromagnetics Research Letters, Vol. 110, 1-10, 2023
Abstract
This work aims to evaluate the contribution of cascaded optical amplifiers in improving the performance of optical communication systems in optical access networks. This study is thus carried out by a system simulation software which presents results concerning the characteristic parameters of two optical amplifiers, EYDWA (Erbium Ytterbium Doped Waveguide Amplifier) and SOA (Semiconductor Optical Amplifier) used in cascade, namely their gains, the length of the guide and the concentration of ions.
Citation
Belabbes Berrahal, Amina Bendaoudi, and Zoubir Mahdjoub, "Performance Optimization of Optical Access Networks Using Two Optical Amplifiers EYDWA and SOA in Cascade," Progress In Electromagnetics Research Letters, Vol. 110, 1-10, 2023.
doi:10.2528/PIERL22122109
References

1. Aggarwal, G. P., Fiber Optic Communication Systems, John Wiley and Sons, New York, 1997.

2. http://millysu.e-monsite.com/blog/centre-de-donnees-et-cloud/abc-du-reseau-PON comprendre-olt-onu-ont-et-odn.html.

3. Zuliyana, M., M. S. Anuar, S. A. Aljunid, A. K. Rahman, C. B. M. Rashidi, and M. S. A. Bakar, "Performance analysis of FSO with haze attenuation consequence acclimatizes in tropical rainforest environment," ARPN Journal of Engineering and Applied Sciences, Vol. 10, February 2015.

4. Attaouia, B. and K. Malika, "Performance improvement by pre-amplifying with Erbium, Ytterbium doped devices link extenders of fiber to the home," International Journal of Information Engineering and Electronic Business, Vol. 8, No. 4, 26-34, MECS, 2016, http://www.mecspress.
doi:10.5815/ijieeb.2016.04.04

5. Lai, K.-H., C.-H. Yeh, and S. Chi, "Coupled-structure erbium-doped fiber amplifier with 94-nm bandwidth," Opt. Eng., Vol. 44, 055001, 2005.

6. Jiang, C., W. Hu, and Q. Zeng, "Improved gain characteristics of high concentration erbium-doped phosphate fiber amplifier," IEEE Photonics Technol. Lett., Vol. 16, 774-776, 2004.
doi:10.1109/LPT.2004.823755

7. Cale, S. T-HTd, A. Salihovic, and M. Ivekovic, "Gigabit passive optical network GPON," Information Technology Interfaces, June 29, 2007.

8. Saleh, A. A. M., R. M. Jopson, J. D. Evankow, and J. Aspell, "Modeling of gain in erbium-doped fiber amplifiers," IEEE Photonics Technology Letters, Vol. 2, 714, October 1990.

9. Obaid, H. M. and H. Shahid, "Achieving high gain using Er-Yb codoped waveguide/fiber optical parametric hybrid amplifier for dense wavelength division multiplexed system," Opt. Eng., Vol. 57, 056108, 1994, 2018.

10. Lecoy, P., Technologie des Telecoms, Ed, Hermes, 1995.

11. http://fr.fibresplitter.com/news/optical-amplifiers-have-revolutionized-the-lon 24291012.html.

12. Jiang, C. and Q. Zeng, "Optimization of erbium-doped waveguide amplifier," Optic. Laser Technol., Vol. 36, 167, 2004.
doi:10.1016/j.optlastec.2003.07.005

13. Desurvire, E., "Ytterbium-doped fiber amplifiers," Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 26, 319-341, 1999.

14. https://www.researchgate.net/figure/Allure-spectrale-du-gain-duSOA_fig12_41308619, .

15. Khaleghi, H., "Influence des amplificateurs optiques a semi-conducteurs (SOA) sur la transmission coherente de signaux optiques a format de modulation multi-porteuses (CO-OFDM),", These de doctorat de l'universite de Bretagne occidentale, 2012.

16. Kikuchi, K. and F. Koyama, "Semiconductor optical amplifiers," Springer Handbook of Lasers and Optics, 2012.

17. Singh, S. and R. S. Kaler, "Review on recent developments in hybrid optical amplifier for dense wavelength division multiplexed system," Opt. Eng., Vol. 54, No. 10, 100901, 2015.
doi:10.1117/1.OE.54.10.100901

18. https://www.researchgate.net/figure/Optical-access-system-with-fiber-and-FSO downlink-OLT-optical-line-terminal SMF_fig1_307612633.html.

19. Berrahal, B. A., M. Anani, and A. Bendaoudi, "Optimization of an EYDWA amplifier parameters for a Gigabit Passive Optical Network (GPON),", Doctoral thesis from the University of Sidi Bel Abbes, 2020.

20. Weinstein, S. B., F. Giraud-Carrier, and C. Victor, Optical Communication Receiver Design, Cambridge University Press, 2013, ISBN: 9781107014136.