Vol. 99
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-21
Improving the Efficiency of Solar Systems by Tracking the MPP Under Different Test Conditions
By
Progress In Electromagnetics Research B, Vol. 99, 83-102, 2023
Abstract
The great technological development, the increase in the number of factories, and the large population growth led to an increase in the demand for the consumption of electric energy that we get from traditional methods (fossil fuels). Moreover, the global shortage in fossil fuel sources and their high costs, the global financial and economic crisis, and the harmful emissions it causes for the environment have made researchers look for electrical energy from alternative and environmentally friendly sources. As a renewable energy, solar energy is considered one of the most important sources of electrical energy today because it is easy to obtain at a low cost. However, this type of energy suffers from low efficiency and is greatly affected by changing weather conditions. To address this problem, several techniques have been proposed by research groups, and MPPT is one of those techniques that has been frequently used in recent years to extract maximum power from solar panels despite the instability in weather conditions. This technique can also generate pulses to control the DC-DC boost converter to provide a certain level of voltage. In this paper, three algorithms, namely Perturbation and Observation (P&O), Fuzzy Logic Controller (FLC), and Particle Swarm Optimization (PSO) are modified and applied in the MPPT technology to control the duty cycle of a DC-DC converter. The photovoltaic system consisting of MPPT technology, solar panels, and a DC-DC boost converter was simulated using MATLAB/Simulink. The performances of the three algorithms were compared to determine the best one that guarantees the highest efficiency under multiple test conditions. The simulation results show that PSO was a better performer than others with (99.32%, 97.02%, and 98.33%, respectively).
Citation
Alaa Shakir Mahmood, and Mustafa Teke, "Improving the Efficiency of Solar Systems by Tracking the MPP Under Different Test Conditions," Progress In Electromagnetics Research B, Vol. 99, 83-102, 2023.
doi:10.2528/PIERB23010703
References

1. Molaei, S., S. Jalilzadeh, and M. Mokhtarifard, "A new controlling method for maximum power point tracking in photovoltaic systems," IJTPE, Vol. 7, No. 1, 1-7, 2015.        Google Scholar

2. Peng, J., L. Lu, and H. Yang, "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renew. Sustain. Energy Rev., Vol. 19, 255-274, 2013.
doi:10.1016/j.rser.2012.11.035        Google Scholar

3. Sampaio, P. G. V. and M. O. A. Gonzalez, "Photovoltaic solar energy: Conceptual framework," Renew. Sustain. Energy Rev., Vol. 74, 590-601, 2017.
doi:10.1016/j.rser.2017.02.081        Google Scholar

4. Abdulaziz, S., G. Attlam, G. Zaki, and E. Nabil, "Cuckoo search algorithm and particle swarm optimization based maximum power point tracking techniques," Indones. J. Electr. Eng. Comput. Sci., Vol. 26, No. 2, 605-616, 2022.        Google Scholar

5. Alzubaidi, A. A., L. A. Khaliq, H. S. Hamad, W. K. Al-Azzawi, M. S. Jabbar, and T. A. Shihab, "MPPT implementation and simulation using developed P&O algorithm for photovoltaic system concerning efficiency," Bull. Electr. Eng. Informatics, Vol. 11, No. 5, 2460-2470, 2022.
doi:10.11591/eei.v11i5.3949        Google Scholar

6. Gouda, E. A., M. F. Kotb, and D. A. Elalfy, "Modelling and performance analysis for a PV system based MPPT using advanced techniques," Eur. J. Electr. Eng. Comput. Sci., Vol. 3, No. 1, 1-7, 2019.        Google Scholar

7. Swain, B., D. Patnaik, J. Halder, P. P. Nayak, D. P. Kar, and S. Bhuyan, "Photovoltaic driven resonant wireless energy transfer system for implantable electronic sensor," Progress In Electromagnetics Research M, Vol. 85, 175-184, 2019.
doi:10.2528/PIERM19073103        Google Scholar

8. Alhussain, H. M. A. and N. Yasin, "Modeling and simulation of solar PV module for comparison of two MPPT algorithms (P&O & INC) in MATLAB/Simulink," Indones. J. Electr. Eng. Comput. Sci., Vol. 18, No. 2, 666-677, 2020.        Google Scholar

9. Chekenbah, H., A. El Abderrahmani, A. Aghanim, Y. Maataoui, and R. Lasri, "Solving problem of partial shading condition in a photovoltaic system through a self-adaptive fuzzy logic controller," Int. J. Tech. Phys. Probl. Eng., Vol. 13, No. 2, 130-137, 2021.        Google Scholar

10. Toumi, D., D. Benattous, A. Ibrahim, et al. "Maximum power point tracking of photovoltaic array using fuzzy logic control," Int. J. Power Electron. Drive Syst., Vol. 13, No. 4, 2440-2449, 2022.        Google Scholar

11. Material, C., "Print t for reprint," Differences, Vol. 104, 85-92, 2006.        Google Scholar

12. Awan, M. M. A., M. Y. Javed, A. B. Asghar, and K. Ejsmont, "Performance optimization of a ten check MPPT algorithm for an off-grid solar photovoltaic system," Energies, Vol. 15, No. 6, 2022.        Google Scholar

13. Al-Adhami, Y. and E. Ercelebi, "A plasmonic monopole Antenna Array on exible photovoltaic panels for further use of the green energy harvesting," Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018.
doi:10.2528/PIERM18032104        Google Scholar

14. Kingston, S. R., C. L. Flamme, M. U. Saleh, , et al. "Spread Spectrum Time Domain Re ectometry (SSTDR) digital twin simulation of photovoltaic systems for fault detection and location," Progress In Electromagnetics Research B, Vol. 94, 105-126, 2021.
doi:10.2528/PIERB21071507        Google Scholar

15. Majaw, T., R. Deka, S. Roy, and B. Goswami, "Solar charge controllers using MPPT and PWM: A review," ADBU J. Electr. Electron. Eng., Vol. 2, No. 1, 1-4, 2018, [Online]. Available: https://media.neliti.com/media/publications/287658-solar-charge-controllers-using-mppt-and-66d6c4aa.pdf.        Google Scholar

16. Bollipo, R. B., S. Mikkili, and P. K. Bonthagorla, "Critical review on PV MPPT techniques: Classical, intelligent and optimisation," IET Renew. Power Gener., Vol. 14, No. 9, 1433-1452, 2020, doi: 10.1049/iet-rpg.2019.1163.
doi:10.1049/iet-rpg.2019.1163        Google Scholar

17. Talbi, M., N. Mensia, and H. Ezzaouia, "Modeling of a PV panel and application of maximum power point tracking command based on ANN," Int. Arab J. Inf. Technol., Vol. 18, No. 4, 568-577, 2021.        Google Scholar

18. Jain, K., M. Gupta, and A. Kumar Bohre, "Implementation and comparative analysis of PO and INC MPPT method for PV system," India Int. Conf. Power Electron. IICPE, 1-6, 2018.        Google Scholar

19. Idadoub, H., M. Kourchi, M. Ajaamoum, D. Yous , and A. Rachdy, "Comparison and experimental validation of three photovoltaic models of four technology types," Int. J. Tech. Phys. Probl. Eng., Vol. 11, No. 4, 1-10, 2019.        Google Scholar

20. Hu, Z., Y. Zhang, L. Liu, L. Yang, and S. He, "A nanostructure-based high-temperature selective absorber-emitter pair for a solar thermophotovoltaic system with narrowband thermal emission," Progress In Electromagnetics Research, Vol. 162, 95-108, 2018.
doi:10.2528/PIER18011002        Google Scholar

21. Eltamaly, A. M. and A. Y. Abdelaziz, Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, 2020.
doi:10.1007/978-3-030-05578-3

22. Ishaque, K., Z. Salam, M. Amjad, and S. Mekhilef, "An improved Particle Swarm Optimization (PSO)-based MPPT for PV with reduced steady-state oscillation," IEEE Trans. Power Electron., Vol. 27, No. 8, 3627-3638, 2012.
doi:10.1109/TPEL.2012.2185713        Google Scholar

23. Mars, N., F. Grouz, N. Essounbouli, and L. Sbita, "Synergetic MPPT controller for photovoltaic system," J. Electr. Electron. Syst., Vol. 6, No. 2, 2017.
doi:10.4172/2332-0796.1000232        Google Scholar

24. Saleem, A., N. Liu, H. Junjie, A. Iqbal, and A. Waqar, "Comprehensive equation-based design of photovoltaic module to investigate its physical parameters and operating conditions used for small application," Meas. Control (United Kingdom), Vol. 53, No. 5-6, 850-858, 2020.
doi:10.1177/0020294020905040        Google Scholar

25. Isen, E. and A. Sengul, "Comparison of maximum power point tracking techniques on photo-voltaic panels," Canakkale Onsekiz Mart Universitesi Fen Bilim. Enstitusu Derg., 14-29, 2020.
doi:10.28979/comufbed.686721        Google Scholar

26. Ali, A., K. Almutairi, S. Padmanaban, et al. "Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition --- A retrospection," IEEE Access, Vol. 8, 127368-127392, 2020.
doi:10.1109/ACCESS.2020.3007710        Google Scholar

27. Belhadj Djilali, A., B. Hemici, and A. Yahdou, "Modi ed perturb and observe MPPT control for avoid deviation in photovoltaic systems," J. Electr. Eng., Vol. 17, No. 1, 28-37, 2017.        Google Scholar

28. Khan, M. J., L. Mathew, M. A. Alotaibi, H. Malik, and M. E. Nassar, "Fuzzy-logic-based comparative analysis of different maximum power point tracking controllers for hybrid renewal energy systems," Mathematics, Vol. 10, No. 3, 2022, doi: 10.3390/math10030529.        Google Scholar

29. Guiza, D., D. Ounnas, Y. Sou , A. Bouden, and M. Maamri, "Implementation of modi ed perturb and observe based MPPT algorithm for photovoltaic system," Proc. --- 2019 1st Int. Conf. Sustain. Renew. Energy Syst. Appl. ICSRESA 2019, 2019.        Google Scholar

30. Baramadeh, M. Y., M. A. A. Abouelela, and S. M. Alghuwainem, "A fuzzy logic controller based MPPT technique for photovoltaic generation system," Smart Grid Renew. Energy, Vol. 12, No. 10, 163-181, 2021.
doi:10.4236/sgre.2021.1210010        Google Scholar

31. Hassan, T. U., R. Abbassi, H. Jerbi, et al. "A novel algorithm for MPPT of an isolated PV system using push pull converter with fuzzy logic controller," Energies, Vol. 13, No. 15, 4007, 2020.
doi:10.3390/en13154007        Google Scholar

32. Li, X., H. Wen, Y. Hu, and L. Jiang, "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application," Renew. Energy, Vol. 130, 416-427, 2019.
doi:10.1016/j.renene.2018.06.071        Google Scholar

33. Robles, C., "Fuzzy logic based MPPT controller for a PV system," Energies, Vol. 10, No. 12, 1-18, 2017.        Google Scholar

34. Li, H., D. Yang, W. Su, J. Lu, and X. Yu, "An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading," IEEE Trans. Ind. Electron., Vol. 66, No. 1, 265-275, 2019.
doi:10.1109/TIE.2018.2829668        Google Scholar

35. Eltamaly, A. M., "A novel particle swarm optimization optimal control parameter determination strategy for maximum power point trackers of partially shaded photovoltaic systems," Eng. Optim., Vol. 54, No. 4, 634-650, 2022.
doi:10.1080/0305215X.2021.1890724        Google Scholar

36. Nisa, M., M. Andleeb, and B. Farhad Ilahi, "Effect of partial shading on a PV array and its maximum power point tracking using particle swarm optimization," J. Phys. Conf. Ser., Vol. 1817, No. 1, 2021.
doi:10.1088/1742-6596/1817/1/012025        Google Scholar

37. Irwanto, M., W. Z. Leow, B. Ismail, et al. "Photovoltaic powered DC-DC boost converter based on PID controller for battery charging system," J. Phys. Conf. Ser., Vol. 1432, No. 1, 2020.
doi:10.1088/1742-6596/1432/1/012055        Google Scholar

38. Prabhu, H. U. and M. R. Babu, "Performance study of mppt algorithms of dc-dc boost converters for PV cell applications," Proc. 7th Int. Conf. Electr. Energy Syst. ICEES 2021, 201-205, 2021.        Google Scholar