1. Vanbésien, O., Artificial Material, Jefferson Digital Commons, 2012.
doi:10.1002/9781118562727
2. Suthar, B. and G. N. Pandey, "Optical properties of one dimensional ternary metamaterial photonic crystal," Macromolecular Symposia, Wiley Online Library, Vol. 397, 2000340-1-2000340-3, 2021. Google Scholar
3. Biswas, R. and N. Mazumder, "Recent advances in plasmonic probes: Theory and practice," Springer Cham, 2022, https://doi.org/10.1007/978-3-030-99491-4. Google Scholar
4. Wu, F., G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, "Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials," Physical Review Applied, Vol. 10, No. 6, 2018.
doi:10.1103/PhysRevApplied.10.064022 Google Scholar
5. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one-dimensional left-handed periodic structures," Phys. Rev. Lett., Vol. 95, No. 19, 193903, 2005.
doi:10.1103/PhysRevLett.95.193903 Google Scholar
6. Lee, C. R., S. H. Lin, S. M. Wang, J. D. Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, "Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells," J. Mater. Chem. C, Vol. 6, No. 18, 4959, 2018.
doi:10.1039/C7TC05724E Google Scholar
7. Xi, F. and L. Hu, "Omnidirectional reflectance gaps and resonant tunneling effect in a one-dimensional photonic crystal consisting of two metamaterials," Eur. Phys. J. D, Vol. 66, No. 2, 1, 2012.
doi:10.1140/epjd/e2011-20346-2 Google Scholar
8. Srivastava, S. K. and A. Aghajamali, "Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials," Physica B: Condensed Matter., Vol. 489, 67-72, 2016.
doi:10.1016/j.physb.2016.01.036 Google Scholar
9. Schurig, D., J. J. Mock, B. J. Justice, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
10. Cong, L. Q., S. K. Valiyaveedu, J. H. Shi, and X. Q. Zhang, "Editorial: Terahertz radiation: Materials and applications," Frontiers in Physics, Vol. 9, Article 671647, 2021. Google Scholar
11. Isić, G., B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajiić, "Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals," Physical Review Applied, Vol. 3, Article 064007, 2015. Google Scholar
12. Wu, F., T. Liu, and S. Xiao, "Polarization-sensitive photonic bandgaps in hybrid one-dimensional photonic crystals composed of all-dielectric elliptical metamaterials and isotropic dielectrics," Applied Optics, Vol. 62, 706-713, 2023.
doi:10.1364/AO.480083 Google Scholar
13. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, Aug. 2000. Google Scholar
14. Vynck, K., "Optical properties of nanostructured dielectric materials: From photonic crystals to metamaterials," Université Montpellier II - Sciences et Techniques du Languedoc, 2008. Google Scholar
15. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
17. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
18. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
19. Cui, T. J. and J. A. Kong, "Time-domain electromagnetic energy in a frequency-dispersive left-handed medium," Physical Review B, Vol. 70, 205106, 2004.
doi:10.1103/PhysRevB.70.205106 Google Scholar
20. Jiang, H., H. Chen, H. Li, and Y. Zhang, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials," Appl. Phys. Lett., Vol. 83, 5386-5388, 2003.
doi:10.1063/1.1637452 Google Scholar
21. Kumar, N., Sonika, B. Suthar, and A. Rostami, "Novel optical behaviors of metamaterial and polymer-based ternary photonic crystal with lossless and lossy features," Optics Communications, Vol. 529, 129073, 2023.
doi:10.1016/j.optcom.2022.129073 Google Scholar
22. Ankita, S. Bissa, B. Suthar, and A. Bhargava, "Graded photonic crystal as improved sensor for nanobiophotonic application," Macromolecular Symposia, Vol. 401, 1-4, 2022. Google Scholar
23. Suthar, B., N. Kumar, and S. A. Taya, "Design and analysis of tunable multichannel transmission filters with a binary photonic crystal of silver/silicon," The European Physical Journal Plus, Vol. 137, 2022. Google Scholar
24. Sakoda, K., Optical Properties of Photonic Crystals, Springer Berlin Heidlberg, 2005.
doi:10.1007/b138376
25. Smith, D. R., R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, "Photonic band structure and defect in one and two dimensions," J. Opt. Soc. Am. B, Vol. 10, 314-321, 1993.
doi:10.1364/JOSAB.10.000314 Google Scholar
26. Oraizi, H. and A. Abdolali, "Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures," IET Microw. Antennas Propag., Vol. 4, 1870-1879, 2010.
doi:10.1049/iet-map.2009.0468 Google Scholar
27. Jen, Y. J., C. C. Lee, K. H. Lu, C. Y. Jheng, and Y. J. Chen, "Fabry-Perot based metal-dielectric multilayered filters and metamaterials," Optics Express, Vol. 23, 33028-33017, 2015. Google Scholar
28. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Physical Review E, Vol. 69, 1-5, 2004. Google Scholar
29. Yeh, P., Optical Waves in Layered Media, Wiley, 1988.
30. Barkat, O., "Theoretical investigation of transmission and dispersion properties of one dimensional photonic crystal," Journal of Electrical and Electronic Engineering, Vol. 3, No. 2, 12-18, 2015. Google Scholar
31. Pandey, G. N. and B. Suthar, "Transmittance properties of superconductor-dielectric photonic crystal," Materials Today: Proceedings, Vol. 49, No. 1, 2021. Google Scholar
32. Ankita, S. Bissa, B. Suthar, C. Nayak, and A. Bhargava, "An improved optical biosensor design using defect/metal multilayer photonic crystal for malaria diagnosis," Results in Optics, Vol. 9, 2022. Google Scholar
33. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Publishing Company, 1989.
34. Srivastava, S. K. and A. Aghajamali, "Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor," Optica Applicata, Vol. 49, No. 1, 2019. Google Scholar
35. Chettah, C., O. Barkat, and A. Chaabi, "Tunable properties of optical selective filters based on one-dimensional plasma superconductor photonic crystal," Journal of Super-conductivity and Novel Magnetism, Vol. 34, 2239-2248, 2021.
doi:10.1007/s10948-021-05891-1 Google Scholar
36. Thabet, R. and O. Barkat, "Transmission spectra in one-dimensional defective photonic crystal integrating metamaterial and superconductor," Journal of Super-conductivity and Novel Magnetism, Vol. 35, 1473-1482, 2022.
doi:10.1007/s10948-022-06195-8 Google Scholar
37. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
38. Aly, A. H., A. A. Ameen, M. A. Mahmoud, Z. S. Matar, M. Al-Dossari, and H. A. Elsayed, "Photonic crystal enhanced by metamaterial for measuring electric permittivity in GHz range," Photonics, Vol. 8, 416, 2021.
doi:10.3390/photonics8100416 Google Scholar
39. Pozar, D. M., Microwave Engineering, Addison-Wesley Publishing Company, 1990.
40. Park, J. H. and J. G. Park, "Uncertainty analysis of Q factor measurement in cavity resonator method by electromagnetic simulation," SN Applied Sciences, Vol. 2, 996, 2020, https://doi.org/10.1007/s42452-020-2819-8.
doi:10.1007/s42452-020-2819-8 Google Scholar
41. Aghajamali, A., T. Alamfard, and M. Hayati, "Loss factor dependence of defect mode in a 1D defective lossy photonic crystal containing DNG materials," Optik - International Journal for Light and Electron Optics, 2015. Google Scholar