1. Massa, A. and F. Viani, "Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions," Proceedings of the IEEE, Vol. 101, No. 6, 1464-1481, 2013.
doi:10.1109/JPROC.2013.2245491 Google Scholar
2. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833 Google Scholar
3. Shidujaman, M., H. Samani, and M. Arif, "Wireless power transmission trends," International Conference on Informatics, Dhaka, Bangladesh, 2014. Google Scholar
4. Sasaki, S., K. Tanaka, and K. Maki, "Microwave power transmission technologies for solar power satellites," Proceedings of the IEEE, Vol. 101, No. 6, 1438-1447, 2013.
doi:10.1109/JPROC.2013.2246851 Google Scholar
5. Liu, X., X. Zhang, and H. Yan, "Research of subarray partition in optically phased array radar," Applied Science & Technology, 2006. Google Scholar
6. Wan, S. and K. Huang, "Methods for improving the transmission-conversion efficiency from transmitting antenna to rectenna array in microwave power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 538-542, 2018. Google Scholar
7. Song, C. M., S. Trinh-Van, S. H. Yi, et al. "Analysis of received power in RF wireless power transfer system with array antennas," IEEE Access, Vol. 9, 76315-76324, 2021.
doi:10.1109/ACCESS.2021.3083270 Google Scholar
8. Xiong, Z., Z. Xu, S. Chen, et al. "Subarray partition in array antenna based on the algorithm X," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 12, 906-909, 2013.
doi:10.1109/LAWP.2013.2272793 Google Scholar
9. Ugur, O., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 10, 262-265, 2011. Google Scholar
10. Yao, Y., L. W. Song, and Y. L. Liu, "Subarray partition design of receiving antenna for microwave power transmission," 2019 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, February 2020. Google Scholar
11. Li, J., J. Pan, and X. Li, "A novel synthesis method of sparse nonuniform-amplitude concentric ring arrays for microwave power transmission," Progress In Electromagnetics Research C, Vol. 107, 1-15, 2021. Google Scholar
12. Yang, Y., J. Li, L. Li, and B. Zhang, "5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 2018.
doi:10.1109/LAWP.2018.2851339 Google Scholar
13. Li, J. and Y. Tan, "A novel receiving antenna array layout method for microwave power transmission," Progress In Electromagnetics Research M, Vol. 108, 187-200, 2022.
doi:10.2528/PIERM21120902 Google Scholar
14. Stark, L., "Microwave theory of phased array antenna - A review," Proceedings of the IEEE, Vol. 62, 1661-1701, 1974.
doi:10.1109/PROC.1974.9684 Google Scholar
15. Qiang, C., C. Xing, and F. Pan, "A comparative study of space transmission efficiency for the microwave wireless power transmission," IEEE Asia-Pacific Microwave Conference, 1-3, Nanjing, China, 2015. Google Scholar
16. Li, X., K. M. Luk, and B. Duan, "Multiobjective optimal antenna synthesis for microwave wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2739-2744, 2019.
doi:10.1109/TAP.2019.2893312 Google Scholar
17. Takahashi, T., T. Mizuno, M. Sawa, et al. "Development of phased array for high accurate microwave power transmission," IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 157-160, Kyoto, Japan, 2011. Google Scholar
18. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory Techniques, Vol. 54, No. 1, 147-152, 2006.
doi:10.1109/TMTT.2005.860509 Google Scholar
19. Bui-Van, H., M. Arts, C. Craeye, et al. "On the maximum absorbed power in receiving antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1993-1995, 2019.
doi:10.1109/TAP.2018.2889137 Google Scholar
20. Zinka, S. R. and J. P. Kim, "On the generalization of taylor and bayliss N-bar array distributions," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1152-1157, 2011.
doi:10.1109/TAP.2011.2173146 Google Scholar
21. Greene, C. E., Area of Operation for a Radio-Frequency Identification (RFID) Tag in the Far-Field, 2006.
22. Colin, R. E., Antenna and Radiowave Propagation, McGraw-Hill, Inc., 1985.