1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
3. Padilla, W. J., D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 7-8, 28-35, 2006.
doi:10.1016/S1369-7021(06)71573-5 Google Scholar
4. Xu, T., A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, "All-angle negative refraction and active at lensing of ultraviolet light," Nature, Vol. 497, 470-474, 2013.
doi:10.1038/nature12158 Google Scholar
5. Yang, Q., J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, "Efficient at metasurface lens for terahertz imaging," Opt. Express, Vol. 22, 25931-25939, 2014.
doi:10.1364/OE.22.025931 Google Scholar
6. Zhang, X. C., "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301 Google Scholar
7. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288 Google Scholar
8. Asrafali, B., C. Venkateswaran, and N. Yogesh, "Spatially squeezed electromagnetic modes of a transformational optics based cavity resonator for targeted material heating," Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021.
doi:10.2528/PIERM21101804 Google Scholar
9. Zimdars, D., J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, "Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation," AIP Conf. Proc., Vol. 760, 570-577, 2005.
doi:10.1063/1.1916726 Google Scholar
10. Hu, B. B. and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., Vol. 20, No. 16, 1716-1718, 1995.
doi:10.1364/OL.20.001716 Google Scholar
11. Lei, Y., B. Liang, S. Zhuang, and G. Wang, "Subwavelength focusing by combining negative-refractive photonic crystal and silicon lens," Opt. Mater. Express, Vol. 9, 3962-3967, 2019.
doi:10.1364/OME.9.003962 Google Scholar
12. Suzuki, T., M. Sekiya, T. Sato, and Y. Takebayashi, "Negative refractive index metamaterial with high transmission, low re ection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314 Google Scholar
13. Bilal, R. M. H., M. A. Baqir, A. Iftikhar, M. M. Ali, A. A. Rahim, M. N. Akhtar, M. J. Mughal, and S. A. Naqvi, "A novel omega shaped microwave absorber with wideband negative refractive index for C-band applications," Optik, Vol. 242, 2021. Google Scholar
14. Askari, M., Z. Touhidi Nia, and M. V. Hosseini, "Modied shnet structure with a wide negative refractive index band and a high gure of merit at microwave frequencies," J. Opt. Soc. Am. B, Vol. 39, 1282-1288, 2022.
doi:10.1364/JOSAB.454386 Google Scholar
15. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz shnet metamaterial," Appl. Phys. Lett., Vol. 102, 151903, 2013.
doi:10.1063/1.4801648 Google Scholar
16. Islam, S. S., M. S. Khan, and M. R. I. Faruque, "Design and analysis of modied-split-H-shaped DNG metamaterial for microwave application," Mater. Res. Express, Vol. 6, 125808, 2019. Google Scholar
17. Yeh, T. T., T. Y. Huang, T. Tanaka, and T.-J. Yen, "Demonstration of a three-dimensional negative index medium operated at multiple-angle incidences by monolithic metallic hemispherical shells," Sci. Rep., Vol. 7, 45549, 2017.
doi:10.1038/srep45549 Google Scholar
18. Ding, J., S. An, B. Zheng, and H. L. Zhang, "Multiwavelength metasurfaces based on single- layer dual-wavelength meta-atoms: Toward complete phase and amplitude modulations at two wavelengths," Adv. Opt. Mater., Vol. 5, No. 10, 1700079, 2017.
doi:10.1002/adom.201700079 Google Scholar
19. Hakim, M. L., T. Alam, M. S. Soliman, N. M. Sahar, M. H. Baharuddin, S. H. A. Almalki, and M. T. Islam, "Polarization insensitive symmetrical structured Double Negative (DNG) metamaterial absorber for Ku-band sensing applications," Sci. Rep., Vol. 10, No. 12(1), 479, 2022.
doi:10.1038/s41598-021-04236-1 Google Scholar
20. Wegrowski, A., W.-C. Wang, C. Tsui, and P. Garu, "Negative refractive index modied shnet enhancement by wire shift," Mater. Res. Express, Vol. 9, 095801, 2022.
doi:10.1088/2053-1591/ac8d50 Google Scholar
21. Marishwari, M., V. Subramanian, Z. Ouyang, and N. Yogesh, "3-D metamaterial based terahertz planoconcave lenses for linearly and circularly polarized waves," Progress In Electromagnetics Research B, Vol. 98, 21-37, 2023.
doi:10.2528/PIERB22101305 Google Scholar
22. Xu, S., J.-B. Liu, H. Wang, C.-K. Su, and H.-B. Sun, "Three-dimensional metacrystals with a broadband isotropic diamagnetic response and an all-angle negative index of refraction," Opt. Lett., Vol. 44, 927-930, 2019.
doi:10.1364/OL.44.000927 Google Scholar
23. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Broadband 3D isotropic negative-index metamaterial based on shnet structure," Eur. Phys. J. B, Vol. 85, 62, 2012.
doi:10.1140/epjb/e2011-20773-9 Google Scholar
24. Liu, Y., G. P. Wang, J. B. Pendry, and S. Zhang, "All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials," Light: Sci. Appl., Vol. 11, 276, 2022.
doi:10.1038/s41377-022-00972-9 Google Scholar
25. Yang, Y., Y. Bi, L. Peng, B. Yang, S. Ma, H.-C. Chan, Y. Xiang, and S. Zhang, "Veselago lensing with Weyl metamaterials," Optica, Vol. 8, 249-254, 2021.
doi:10.1364/OPTICA.406167 Google Scholar
26. Zaremanesh, M. and M. Noori, "All-angle polarization-insensitive negative refraction in high- dielectric photonic crystal," Appl. Opt., Vol. 58, 5631-5636, 2019.
doi:10.1364/AO.58.005631 Google Scholar
27. Zharov, A., V. Fierro, and A. Celzard, "All-dielectric bulk isotropic double-negative metamaterials," J. Opt. Soc. Am. B, Vol. 38, 159-166, 2021.
doi:10.1364/JOSAB.408571 Google Scholar
28. Engheta, N., "Ideas for potential applications of metamaterials with negative permittivity and permeability," Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, S. Zouhdi, A. Sihvola, and M. Arsalane (eds.), Vol. 89. Springer, Dordrecht, 2002. Google Scholar
29. Tamosiunaite, M., S. Tamosiunas, and M. Z. A. Valusis, "Atmospheric attenuation of the terahertz wireless networks," Broadband Communications Networks | Recent Advances and Lessons from Practice, 2017.
doi:10.2528/PIERM10012604 Google Scholar
30. Yogesh, N. and V. Subramanian, "Analysis of self-collimation based cavity resonator formed by photonic crystal," Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010.
doi:10.3390/nano12030555 Google Scholar
31. Zheng, Y., Q. Wang, M. Lin, and Z. Ouyang, "Enhancement of self-collimation effect in photonic crystal membranes using hyperbolic metamaterials," Nanomaterials (Basel), Vol. 12, No. 3, 555, 2022. Google Scholar
32. Lee, D. H. and W. S. Park, "Extraction of effective permittivity and permeability of periodic metamaterial cells," Microw. Opt. Technol. Lett., Vol. 51, 1824-1830, 2009.
doi:10.1088/0953-8984/10/22/007 Google Scholar
33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Extremely low frequency plasmons in Metallic Mesostructures," J. Phys. Condens. Lett., Vol. 10, 4785-4809, 1998.
doi:10.1109/22.798002 Google Scholar
34. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1364/OPEX.13.008753 Google Scholar
35. Aydin, K., I. Bulu, and E. Ozbay, "Focusing of electromagnetic waves by a left-handed metamaterial at lens," Opt. Express, Vol. 13, 8753-8759, 2005.
doi:10.1201/9781420068764 Google Scholar
36. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, 1st Edition, CRC Press, 2008.
doi:10.1364/JOSAB.23.002348
37. Banerjee, P. P. and G. Nehmetallah, "Linear and nonlinear propagation in negative index materials," J. Opt. Soc. Am. B, Vol. 23, 2348-2355, 2006.
doi:10.1364/OE.11.000662 Google Scholar
38. Engheta, N. and R. W. Ziolkowski, Metamaterials ---| Physics and Engineering Explorations, IEEE Press, 2006.
doi:10.1002/lpor.200710039
39. Ziolkowski, R., "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express, Vol. 11, No. 7, 662-681, Apr. 7, 2003.
doi:10.1143/APEX.3.016701 Google Scholar
40. Maruo, S. and J. Fourkas, "Recent progress in multiphoton microfabrication," Laser & Photon. Rev., Vol. 2, 100-111, 2008.
doi:10.1038/nmat2197 Google Scholar
41. Takano, K., T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super-ne ink-jet printer," Appl. Phys. Express, Vol. 3, 016701, 2010. Google Scholar
42. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, 543-546, 2008.
doi:10.1109/MEMSYS.2017.7863397 Google Scholar
43. Hernandez, D. S. and J. B. Shear, "Mask-directed micro-3D printing," Micro and Nano Technologies, Three-Dimensional Microfabrication Using Two-Photon Polymerization (Second Edition), William Andrew Publishing, 2020.
doi:10.1002/lpor.201900071 Google Scholar
44. Mao, Y., Z. Chen, J. Zhu, Y. Pan, W. Wu, and J. Xu, "Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation," IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 285-288, 2017.
doi:10.3390/ma12213527 Google Scholar
45. Wang, Q., B. Gao, M. Raglione, H. Wang, B. Li, F. Toor, M. A. Arnold, and H. Ding, "Design, fabrication, and modulation of THz bandpass metamaterials," Laser & Photonics Reviews, Vol. 13, 1900071, 2019.
doi:10.1016/j.mattod.2022.08.020 Google Scholar
46. Reinbold, J., T. Frenzel, A. Munchinger, and M. Wegener, "The rise of (chiral) 3D mechanical metamaterials," Materials (Basel), Vol. 12, No. 21, 3527, 2019.
doi:10.1038/srep18605 Google Scholar
47. Munchinger, A., L.-Y. Hsu, F. Furniβ, E. Blasco, and M. Wegener, "3D optomechanical metamaterials," Materials Today, Vol. 59, 9-17, 2022.
doi:10.1515/nanoph-2021-0703 Google Scholar
48. Huang, T.-Y., C.-W. Tseng, T.-T. Yeh, T.-T. Yeh, C.-W. Luo, T. Akalin, and T.-J. Yen, "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015. Google Scholar
49. Okatani, T., Y. Sunada, K. Hane, and Y. Kanamori, "Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators," Nanophotonics, Vol. 11, No. 9, 2065-2074, 2022. Google Scholar