Vol. 99
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-24
Terahertz Sub-Wavelength Focusing and Negative Refraction Assisted Beam Transferring Based on 3-D Metamaterial Flat Lens Configurations
By
Progress In Electromagnetics Research B, Vol. 99, 121-138, 2023
Abstract
A flat lens made of a negative index (NI) metamaterial (MTM) focuses the diverging light waves with sub-wavelength resolution. However, to achieve tight 3-D focusing, one needs to realize a 3-D MTM with azimuthal and elevation focusing. In this work, a polarization-insensitive, wide-incident angle 3-D MTM showing an NI band of 0.34 THz (37%) centered at 0.92 THz is realized. A flat lens designed out of the proposed 3-D NI MTM shows sub-wavelength spot sizes of 0.48λ1 and 0.39λ2 for cylindrical electromagnetic (EM) waves emanating out of an electric dipole source, at 0.9 THz and 0.95 THz respectively. Also, the sub-wavelength focusing features of the NI flat slab are verified along non-symmetric planes by tilting the dipole source for different angles. It is also found that the finite flat slab configurations efficiently transfer EM beams for long conveyance lengths at NI frequencies. Thus, the realized flat slab configurations are useful for 3-D focusing requirements in optical trapping and imaging, and they are also useful for reducing the transmission losses associated with beam divergences.
Citation
Marishwari Muthusamy, Venkatachalam Subramanian, Zhengbiao Ouyang, and Natesan Yogesh, "Terahertz Sub-Wavelength Focusing and Negative Refraction Assisted Beam Transferring Based on 3-D Metamaterial Flat Lens Configurations," Progress In Electromagnetics Research B, Vol. 99, 121-138, 2023.
doi:10.2528/PIERB23012803
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

2. Pendry, B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

3. Padilla, W. J., D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 7-8, 28-35, 2006.
doi:10.1016/S1369-7021(06)71573-5        Google Scholar

4. Xu, T., A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, "All-angle negative refraction and active at lensing of ultraviolet light," Nature, Vol. 497, 470-474, 2013.
doi:10.1038/nature12158        Google Scholar

5. Yang, Q., J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, "Efficient at metasurface lens for terahertz imaging," Opt. Express, Vol. 22, 25931-25939, 2014.
doi:10.1364/OE.22.025931        Google Scholar

6. Zhang, X. C., "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301        Google Scholar

7. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288        Google Scholar

8. Asrafali, B., C. Venkateswaran, and N. Yogesh, "Spatially squeezed electromagnetic modes of a transformational optics based cavity resonator for targeted material heating," Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021.
doi:10.2528/PIERM21101804        Google Scholar

9. Zimdars, D., J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, "Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation," AIP Conf. Proc., Vol. 760, 570-577, 2005.
doi:10.1063/1.1916726        Google Scholar

10. Hu, B. B. and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., Vol. 20, No. 16, 1716-1718, 1995.
doi:10.1364/OL.20.001716        Google Scholar

11. Lei, Y., B. Liang, S. Zhuang, and G. Wang, "Subwavelength focusing by combining negative-refractive photonic crystal and silicon lens," Opt. Mater. Express, Vol. 9, 3962-3967, 2019.
doi:10.1364/OME.9.003962        Google Scholar

12. Suzuki, T., M. Sekiya, T. Sato, and Y. Takebayashi, "Negative refractive index metamaterial with high transmission, low re ection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314        Google Scholar

13. Bilal, R. M. H., M. A. Baqir, A. Iftikhar, M. M. Ali, A. A. Rahim, M. N. Akhtar, M. J. Mughal, and S. A. Naqvi, "A novel omega shaped microwave absorber with wideband negative refractive index for C-band applications," Optik, Vol. 242, 2021.        Google Scholar

14. Askari, M., Z. Touhidi Nia, and M. V. Hosseini, "Modi ed shnet structure with a wide negative refractive index band and a high gure of merit at microwave frequencies," J. Opt. Soc. Am. B, Vol. 39, 1282-1288, 2022.
doi:10.1364/JOSAB.454386        Google Scholar

15. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz shnet metamaterial," Appl. Phys. Lett., Vol. 102, 151903, 2013.
doi:10.1063/1.4801648        Google Scholar

16. Islam, S. S., M. S. Khan, and M. R. I. Faruque, "Design and analysis of modi ed-split-H-shaped DNG metamaterial for microwave application," Mater. Res. Express, Vol. 6, 125808, 2019.        Google Scholar

17. Yeh, T. T., T. Y. Huang, T. Tanaka, and T.-J. Yen, "Demonstration of a three-dimensional negative index medium operated at multiple-angle incidences by monolithic metallic hemispherical shells," Sci. Rep., Vol. 7, 45549, 2017.
doi:10.1038/srep45549        Google Scholar

18. Ding, J., S. An, B. Zheng, and H. L. Zhang, "Multiwavelength metasurfaces based on single- layer dual-wavelength meta-atoms: Toward complete phase and amplitude modulations at two wavelengths," Adv. Opt. Mater., Vol. 5, No. 10, 1700079, 2017.
doi:10.1002/adom.201700079        Google Scholar

19. Hakim, M. L., T. Alam, M. S. Soliman, N. M. Sahar, M. H. Baharuddin, S. H. A. Almalki, and M. T. Islam, "Polarization insensitive symmetrical structured Double Negative (DNG) metamaterial absorber for Ku-band sensing applications," Sci. Rep., Vol. 10, No. 12(1), 479, 2022.
doi:10.1038/s41598-021-04236-1        Google Scholar

20. Wegrowski, A., W.-C. Wang, C. Tsui, and P. Garu, "Negative refractive index modi ed shnet enhancement by wire shift," Mater. Res. Express, Vol. 9, 095801, 2022.
doi:10.1088/2053-1591/ac8d50        Google Scholar

21. Marishwari, M., V. Subramanian, Z. Ouyang, and N. Yogesh, "3-D metamaterial based terahertz planoconcave lenses for linearly and circularly polarized waves," Progress In Electromagnetics Research B, Vol. 98, 21-37, 2023.
doi:10.2528/PIERB22101305        Google Scholar

22. Xu, S., J.-B. Liu, H. Wang, C.-K. Su, and H.-B. Sun, "Three-dimensional metacrystals with a broadband isotropic diamagnetic response and an all-angle negative index of refraction," Opt. Lett., Vol. 44, 927-930, 2019.
doi:10.1364/OL.44.000927        Google Scholar

23. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Broadband 3D isotropic negative-index metamaterial based on shnet structure," Eur. Phys. J. B, Vol. 85, 62, 2012.
doi:10.1140/epjb/e2011-20773-9        Google Scholar

24. Liu, Y., G. P. Wang, J. B. Pendry, and S. Zhang, "All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials," Light: Sci. Appl., Vol. 11, 276, 2022.
doi:10.1038/s41377-022-00972-9        Google Scholar

25. Yang, Y., Y. Bi, L. Peng, B. Yang, S. Ma, H.-C. Chan, Y. Xiang, and S. Zhang, "Veselago lensing with Weyl metamaterials," Optica, Vol. 8, 249-254, 2021.
doi:10.1364/OPTICA.406167        Google Scholar

26. Zaremanesh, M. and M. Noori, "All-angle polarization-insensitive negative refraction in high- dielectric photonic crystal," Appl. Opt., Vol. 58, 5631-5636, 2019.
doi:10.1364/AO.58.005631        Google Scholar

27. Zharov, A., V. Fierro, and A. Celzard, "All-dielectric bulk isotropic double-negative metamaterials," J. Opt. Soc. Am. B, Vol. 38, 159-166, 2021.
doi:10.1364/JOSAB.408571        Google Scholar

28. Engheta, N., "Ideas for potential applications of metamaterials with negative permittivity and permeability," Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, S. Zouhdi, A. Sihvola, and M. Arsalane (eds.), Vol. 89. Springer, Dordrecht, 2002.        Google Scholar

29. Tamosiunaite, M., S. Tamosiunas, and M. Z. A. Valusis, "Atmospheric attenuation of the terahertz wireless networks," Broadband Communications Networks | Recent Advances and Lessons from Practice, 2017.
doi:10.2528/PIERM10012604        Google Scholar

30. Yogesh, N. and V. Subramanian, "Analysis of self-collimation based cavity resonator formed by photonic crystal," Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010.
doi:10.3390/nano12030555        Google Scholar

31. Zheng, Y., Q. Wang, M. Lin, and Z. Ouyang, "Enhancement of self-collimation effect in photonic crystal membranes using hyperbolic metamaterials," Nanomaterials (Basel), Vol. 12, No. 3, 555, 2022.        Google Scholar

32. Lee, D. H. and W. S. Park, "Extraction of effective permittivity and permeability of periodic metamaterial cells," Microw. Opt. Technol. Lett., Vol. 51, 1824-1830, 2009.
doi:10.1088/0953-8984/10/22/007        Google Scholar

33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Extremely low frequency plasmons in Metallic Mesostructures," J. Phys. Condens. Lett., Vol. 10, 4785-4809, 1998.
doi:10.1109/22.798002        Google Scholar

34. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1364/OPEX.13.008753        Google Scholar

35. Aydin, K., I. Bulu, and E. Ozbay, "Focusing of electromagnetic waves by a left-handed metamaterial at lens," Opt. Express, Vol. 13, 8753-8759, 2005.
doi:10.1201/9781420068764        Google Scholar

36. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, 1st Edition, CRC Press, 2008.
doi:10.1364/JOSAB.23.002348

37. Banerjee, P. P. and G. Nehmetallah, "Linear and nonlinear propagation in negative index materials," J. Opt. Soc. Am. B, Vol. 23, 2348-2355, 2006.
doi:10.1364/OE.11.000662        Google Scholar

38. Engheta, N. and R. W. Ziolkowski, Metamaterials ---| Physics and Engineering Explorations, IEEE Press, 2006.
doi:10.1002/lpor.200710039

39. Ziolkowski, R., "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express, Vol. 11, No. 7, 662-681, Apr. 7, 2003.
doi:10.1143/APEX.3.016701        Google Scholar

40. Maruo, S. and J. Fourkas, "Recent progress in multiphoton microfabrication," Laser & Photon. Rev., Vol. 2, 100-111, 2008.
doi:10.1038/nmat2197        Google Scholar

41. Takano, K., T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super- ne ink-jet printer," Appl. Phys. Express, Vol. 3, 016701, 2010.        Google Scholar

42. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, 543-546, 2008.
doi:10.1109/MEMSYS.2017.7863397        Google Scholar

43. Hernandez, D. S. and J. B. Shear, "Mask-directed micro-3D printing," Micro and Nano Technologies, Three-Dimensional Microfabrication Using Two-Photon Polymerization (Second Edition), William Andrew Publishing, 2020.
doi:10.1002/lpor.201900071        Google Scholar

44. Mao, Y., Z. Chen, J. Zhu, Y. Pan, W. Wu, and J. Xu, "Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation," IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 285-288, 2017.
doi:10.3390/ma12213527        Google Scholar

45. Wang, Q., B. Gao, M. Raglione, H. Wang, B. Li, F. Toor, M. A. Arnold, and H. Ding, "Design, fabrication, and modulation of THz bandpass metamaterials," Laser & Photonics Reviews, Vol. 13, 1900071, 2019.
doi:10.1016/j.mattod.2022.08.020        Google Scholar

46. Reinbold, J., T. Frenzel, A. Munchinger, and M. Wegener, "The rise of (chiral) 3D mechanical metamaterials," Materials (Basel), Vol. 12, No. 21, 3527, 2019.
doi:10.1038/srep18605        Google Scholar

47. Munchinger, A., L.-Y. Hsu, F. Furniβ, E. Blasco, and M. Wegener, "3D optomechanical metamaterials," Materials Today, Vol. 59, 9-17, 2022.
doi:10.1515/nanoph-2021-0703        Google Scholar

48. Huang, T.-Y., C.-W. Tseng, T.-T. Yeh, T.-T. Yeh, C.-W. Luo, T. Akalin, and T.-J. Yen, "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015.        Google Scholar

49. Okatani, T., Y. Sunada, K. Hane, and Y. Kanamori, "Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators," Nanophotonics, Vol. 11, No. 9, 2065-2074, 2022.        Google Scholar