Vol. 131
Latest Volume
All Volumes
2023-03-20
Yttria-Stabilized Zirconia Based Patch Antenna for Harsh Environment Applications
By
Progress In Electromagnetics Research C, Vol. 131, 89-101, 2023
Abstract
Wireless devices that can operate under harsh environments are of great interest for military, space, and commercial applications such as antennas and radomes for fighter jets, wireless sensor networks for oil drilling and aircraft propulsion, and safety devices for first responders. Since antennas are key components of Radio Frequency (RF) Systems, it is crucial to have the antenna be able to withstand the same environmental hardships for a reliable and efficient communication. Various substrates have been utilized to implement antennas to withstand harsh environments and particularly high temperatures. Existing solutions such as silicon carbide (SiC), alumina, and polymer derived ceramics require complex deposition and patterning techniques, which make them unsuitable for low-cost RF and microwave applications. The main objective of this study is to explore microstrip patch antenna fabrication technology utilizing Zirconia Ribbon Ceramic (ZRC) materials and assess ZRC as a potential dielectric substrate for harsh environment applications. To do so, first, a wideband coplanar waveguide (CPW) fed monopole antenna is presented on ZRC substrate operating within the S band. The proposed design has been manufactured using two separate methods including a clean room sputtering process and inkjet printing. A good agreement has been obtained between the measured results of the inkjet-printed prototype and simulations. Impedance matching and radiation patterns are investigated. The inkjet printing process has been shown to be a viable and cost-effective solution for fabricating ZRC-based patch antennas.
Citation
Aleks Mertvyy, Md. Samiul Islam Sagar, Noah Renk, Praveen Kumar Sekhar, and Tutku Karacolak, "Yttria-Stabilized Zirconia Based Patch Antenna for Harsh Environment Applications," Progress In Electromagnetics Research C, Vol. 131, 89-101, 2023.
doi:10.2528/PIERC23020101
References

1. Schubert, E. and S. Markus, "Evaluation of wireless sensor technologies in a firefighting environment," Proceedings of International Conference on Networked Sensing Systems (INSS), IEEE Xplore, Kassel, Germany, June 15-18, 2010.

2. Werner-Allen, G., J. Johnson, M. Ruiz, J. Lees, and M. Welsh, "Monitoring volcanic eruptions with a wireless sensor network," Proceedings of the Second European Workshop on Wireless Sensor Networks, IEEE Xplore, Istanbul, Turkey, February 2, 2005.

3. Weng, F., H. Yang, and X. Zou, "On convertibility from antenna to sensor brightness temperature for ATMs," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 4, 771-775, 2013.
doi:10.1109/LGRS.2012.2223193

4. Bangert, J. T., R. S. Engelbrecht, E. T. Harkless, R. V. Sperry, and E. J. Walsh, "The spacecraft antennas," The Bell System Technical Journal, Vol. 42, No. 4, 869-897, 1963.
doi:10.1002/j.1538-7305.1963.tb04022.x

5. Bittner, D., A. Cody, C. Eubank, C. Jorgensen, T. Reppert, J. Shultis, B. Streetman, and D. Ziegler, "Follow-on mission for the hubble space telescope,", 2004.

6. Specifications "SZ0429 Yttria stabilized Zirconia Y2O3*ZrO2 (YSZ)," Stanford Advanced Materials, [Online], Available: https://www.samaterials.com/zirconium/429-yttria-stabilized-zirconia.html.

7. Aryal, M., S. W. Allison, K. Olenick, and F. Sabri, "Flexible thin film ceramics for high temperature thermal sensing applications," Optical Materials, Vol. 100, 109656, 2020.
doi:10.1016/j.optmat.2020.109656

8. Koo, J. Y., Y. Lim, Y. B. Kim, D. Byun, and W. Lee, "Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, Vol. 42, No. 24, 15903-15907, 2017.
doi:10.1016/j.ijhydene.2017.04.099

9. Soon, G., B. Pingguan-Murphy, and S. A. Akbar, "Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 68, 26-31, 2017.
doi:10.1016/j.jmbbm.2017.01.028

10. López-Gándara, C., F. M. Ramos, and A. Cirera, "YSZ-based oxygen sensors and the use of nanomaterials: A review from classical models to current trends," Journal of Sensors, Vol. 2009, 1-15, 2009.
doi:10.1155/2009/258489

11. Skinner, S. J., J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, "YAG: YSZ composites as potential thermographic phosphors for high temperature sensor applications," Sensors and Actuators B: Chemical, Vol. 136, No. 1, 52-59, 2009.
doi:10.1016/j.snb.2008.10.070

12. Zhu, Y., K. Liu, J. Deng, J. Ye, F. Ai, H. Ouyang, T. Wu, J. Jia, X. Cheng, and X. Wang, "3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties," Int. J. Nanomed., Vol. 14, 5977-5987, 2019.
doi:10.2147/IJN.S202457

13. Moura, C. G., H. Dinis, O. Carvalho, P. M. Mendes, R. M. Nascimento, and F. S. Silva, "A novel approach for micro-antenna fabrication on ZrO2 substrate assisted by laser printing for smart implants," Applied Sciences, Vol. 12, 9333, 2022.
doi:10.3390/app12189333

14. Moura, C. G., D. Faria, O. Carvalho, R. Pereira, M. Cerqueira, R. Nascimento, and F. S. Silva, "Laser printing of silver-based micro-wires in ZrO2 substrate for smart implant applications," Optics & Laser Technology, Vol. 131, 106416, 2020.
doi:10.1016/j.optlastec.2020.106416

15. Wang, S., L. Zhu, Y. Li, G. Zhang, J. Yang, J. Wang, and W. Wu, "Radar cross-section reduction of helical antenna by replacing metal with 3-D printed zirconia ceramic," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 2, 350-354, 2020.
doi:10.1109/LAWP.2019.2962524

16. Oh, Y., V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M. A. Abraham, J. M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, and J. J. Adams, "Microwave dielectric properties of zirconia fabricated using nanoparticle jetting," Additive Manufacturing, Vol. 27, 586-594, 2019.
doi:10.1016/j.addma.2019.04.005

17. Mejias-Morillo, C. R., J. B. Shivakumar, S. L. Yu, B. Roberts, P. Cortes, E. Macdonald, A. V. Polotai, and E. A. Rojas-Nastrucci, "High-temperature additively manufactured C-band antennas using material jetting of zirconia and micro-dispending of platinum paste," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1289-1301, 2022.
doi:10.1109/OJAP.2022.3218798

18. Mummareddy, B., D. Negro, V. T. Bharambe, Y. Oh, E. Burden, M. Ahlfors, J. Choi, A. D. Plessis, J. Adams, E. Macdonald, and P. Cortes, "Mechanical properties of material jetted zirconia complex geometries with hot isostatic pressing," Advances in Industrial and Manufacturing Engineering, Vol. 3, 100052, 2021.
doi:10.1016/j.aime.2021.100052

19. Harrop, P. J. and J. N. Wanklyn, "The dielectric constant of zirconia," British Journal of Applied Physics, Vol. 18, 739, 1967.
doi:10.1088/0508-3443/18/6/305

20. Elena de Cos Gomez, M., H. Fernandez Alvarez, B. Puerto Valcarce, C. Garcia Gonzalez, J. Olenick, and F. Las-Heras Andres, "Zirconia-based ultra-thin compact flexible CPW-fed slot antenna for IoT," Micromachines, Vol. 19, No. 14, 3134, 2019.

21. Datasheet "ENrG thin E-strate®, Zirconia Ribbon Ceramic Substrate," MatWeb: Material Property Data, [Online], Available: https://www.matweb.com/search/datasheet.aspxmatguid=7a3cd87004934e1f83f0fd7f34813948& ckck=1.

22. Hertleer, C., H. Rogier, L. Vallozzi, and L. Van Langenhove, "A textile antenna for off-body communication integrated into protective clothing for firefighters," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 919-925, 2009.
doi:10.1109/TAP.2009.2014574

23. Vanveerdeghem, P., H. Rogier, J. Knockaert, P. Van Torre, and C. Stevens, "Flexible dual-diversity wearable wireless mode integrated on dual-polarised textile patch antenna," IET Science, Measurement & Technology, Vol. 8, No. 6, 452-458, 2014.
doi:10.1049/iet-smt.2013.0224

24. Declercq, F., A. Georgiadis, and H. Rogier, "Wearable aperture-coupled shorted solar patch antenna for remote tracking and monitoring applications," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), IEEE Xplore, Rome, Italy, May 31, 2011.

25. Rhys Le Comte, B., G. Sen Gupta, and M. Tin Chew, "Distributed sensors for hazard detection in an urban search and rescue operation," 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, IEEE Xplore, Graz, Austria, July 2, 2012.

26. Karacolak, T., R. V. K. Thirmulai, J. Neil Merrett, Y. Koshka, and E. Topsakal, "Silicon Carbide (SiC) antennas for high-temperature and high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 409-412, 2013.
doi:10.1109/LAWP.2013.2251599

27. Scardelletti, M. C., J. L. Jordan, and G. E. Ponchak, "Temperature dependency (25˚C-400˚C) of a planar folded slot antenna on alumina substrate," IEEE Antenna and Wireless Propagation Letters, Vol. 7, 489-492, 2008.
doi:10.1109/LAWP.2008.2006068

28. Cheng, H., X. Ren, S. Ebadi, and X. Gong, "A wide-band square slot antenna for high-temperature applications," Proceedings IEEE APS/URSI International Symposium, IEEE Xplore, Orlando, Florida, January 27, 2014.

29. Cheng, H., X. Ren, S. Ebadi, Y. Chen, L. An, and X. Gong, "Wireless passive temperature sensors using integrated cylindrical resonator/antenna for harsh-environment applications," IEEE Sensors Journal, Vol. 15, No. 3, 1453-1462, 2014.
doi:10.1109/JSEN.2014.2363426

30. Yan, D., Y. Yang, Y. Hong, T. Liang, Z. Yao, X. Chen, and J. Xiong, "AlN-based ceramic patch antenna-type wireless passive high-temperature sensor," Micromachines, Vol. 8, No. 10, 301, 2017.
doi:10.3390/mi8100301

31. Zhu, D., "Aerospace ceramic materials: Thermal, environmental barrier coatings and SiC/SiC ceramic matrix composites for turbine engine applications," Nat. Aeronaut. Space Admin., NASA/TM-2018-219884, 2018.

32. Mertvyy, A., N. Renk, V. Bigelow, B. A. Younes, P. Sekhar, and T. Karacolak, "A wideband CPW-fed monopole antenna for high-temperature applications," Proceedings IEEE APS/URSI International Symposium, IEEE Xplore, Denver, Colorado, July 10-15, 2022.

33. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.

34. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568

35. Depla, D., S. Mahieu, and J. E. Greene, Sputter Deposition Processes, 253-296, William Andrew Applied Science Publishers, 2009.

36. FUJIFILM Specification Sheet "Dimatix® Materials Cartridge - Samba® Cartridge," FUJIFILM Dimatix, [Online], Available: https://f.hubspotusercontent30.net/hubfs/5352080/Samba%20Cartridge.pdf.