Vol. 132
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-07
Simplified Design Procedure for Fourth-Order Coupled-Resonator Bandpass Filter
By
Progress In Electromagnetics Research C, Vol. 132, 11-21, 2023
Abstract
This paper presents a new simplified procedure to design a fourth-order coupled resonator filter. This procedure does not require the calculation of complicated Eigenvalues to develop the required coupling matrix. It starts with studying the effects of different coupling mechanisms on the performance of the overall filter structure. Then, these coupling mechanisms are combined to obtain the design of the required filter. This procedure may be more suitable for machine learning procedure to design coupled-resonator filters. The proposed method is used to design a substrate integrated waveguide (SIW) bandpass filter for sub-six GHz 5G applications. The designed SIW bandpass filter operates in the frequency range from 3.7 GHz to 3.98 GHz which covers the New C-band 5G network with a fractional bandwidth (FBW) of 28% and is centered at 3.84 GHz. This filter is fabricated and measured for verification.
Citation
Mai A. Salah, Eman M. Eldesouki, Ahmed Attiya, and Walid Saber El-Deeb, "Simplified Design Procedure for Fourth-Order Coupled-Resonator Bandpass Filter," Progress In Electromagnetics Research C, Vol. 132, 11-21, 2023.
doi:10.2528/PIERC23020604
References

1. Xu, J., K. Bi, X. Zhai, Y. Hao, and K. D. Mcdonald-Maier, "A dual-band microwave filter design for modern wireless communication systems," IEEE Access, Vol. 7, 98786-98791, 2019.
doi:10.1109/ACCESS.2019.2930688

2. Yang, Y. and T. Liu, "Research on microwave filter of wireless communication system based on slot structure," Nonlinear Optics, Quantum Optics: Concepts in Modern Optics, Vol. 55, 259-267, 2022.

3. Ismail, N., T. S. Gunawan, T. Praludi, and E. A. Hamidi, "Design of microstrip hairpin bandpass filter for 2.9 GHz{3.1 GHz S-band radar with defected ground structure," Malaysian Journal of Fundamental and Applied Sciences, Vol. 14, No. 4, 448-455, 2018.
doi:10.11113/mjfas.v14n4.1073

4. Adli, B., R. Mardiati, and Y. Y. Maulana, "Design of microstrip hairpin bandpass filter for X-band radar navigation," International Conference on Wireless and Telematics (ICWT), 1-6, 2018.

5. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters --- Applications and technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 794-805, 2002.
doi:10.1109/22.989963

6. Hong, J. S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.

7. Lee, J. and K. Sarabandi, "A synthesis method for dual-passband microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1163-1170, 2007.
doi:10.1109/TMTT.2007.897712

8. Tamiazzo, S. and G. Macchiarella, "An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonator microwave filters using matrix rotations," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1693-1698, 2005.
doi:10.1109/TMTT.2005.847065

9. Macchiarella, G. and S. Tamiazzo, "A design technique for symmetric dual band filters," IEEE MTTS Int. Microw. Symp., 115-118, 2005.

10. Atia, W. A., K. A. Zaki, and A. E. Atia, "Synthesis of general topology multiple coupled resonator filters by optimisation," IEEE MTTS Int. Microw. Symp., 821-824, 1998.

11. Nicholson, G. L. and M. J. Lancaster, "Coupling matrix synthesis of cross coupled microwave filters using a hybrid optimisation algorithm," IET Microw. Antennas Propag., Vol. 3, No. 6, 950-958, 2009.
doi:10.1049/iet-map.2008.0145

12. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, Wiley, 2007.

13. Hong, J. S. and M. J. Lancaster, Micrsotrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

14. Sun, J. J., S. Sun, X. Yu, Y. P. Chen, and J. Hu, "A deep neural network based tuning technique of lossy microwave coupled resonator filters," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2169-2173, 2019.
doi:10.1002/mop.31866

15. Senel, B. and F. A. Senel, "Bandpass filter design using deep neural network and differential evolution algorithm," Arabian Journal for Science and Engineering, Vol. 47, 14343-14354, 2022.
doi:10.1007/s13369-022-06769-7

16. Roshani, S., H. Heshmati, and S. Roshani, "Design of a microwave lowpass --- Bandpass filter using deep learning and artificial intelligence," Journal of the Institute of Electronics and Computer, Vol. 3, No. 1, 1-16, 2021.
doi:10.33969/JIEC.2021.31001

17. Hong, J. S., "Couplings of asynchronously tuned coupled microwave resonators," IEE Proceedings: Microwaves, Antennas and Propagation, Vol. 147, No. 5, 354-358, 2000.
doi:10.1049/ip-map:20000675

18. Liu, S., J. Li, S. H. Hwang, H. K. Son, and Y. J. Chong, "Interference analysis method for 5G system to radio altimeter," Asia Pacific Wireless Communications Symposium (APWCS), 80-84, 2022.