1. Anastasov, J., S. Panic, M. Stefanovic, and P. Spalevic, Fading and Interference Mitigation in Wireless Communications, CRC Press, Inc., 2017.
2. Mahender, K., T. A. Kumar, and K. S. Ramesh, "Analysis of multipath channel fading techniques in wireless communication systems," AIP Conference Proceedings 1952, 020050, 2018.
doi:10.1063/1.5032012 Google Scholar
3. Rojsel, P., "RF MEMS-based wireless architectures and front-ends," Handbook of MEMS for Wireless and Mobile Applications, 207-224, 2013.
doi:10.1533/9780857098610.1.207 Google Scholar
4. Bembarka, A., L. Setti, A. Tribak, H. Nachouane, and H. Tizyi, "Frequency tunable filtenna using defected ground structure filter in the sub-6 GHz for cognitive radio applications," Progress In Electromagnetics Research C, Vol. 118, 213-229, 2022.
doi:10.2528/PIERC22011403 Google Scholar
5. Chaipanya, P., S. Kaewuam, J. Hirunruang, W. Suntara, N. Santalunai, and S. Santalunai, "Dual band switched beam textile antenna for 5G wireless communications," CMC --- Comput. Mat. Contin., Vol. 73, 181-198, 2022. Google Scholar
6. Zulfi, J. S. and A. Munir, "Design and characterization of 4 x 4 Butler matrix for switched-beam antenna array," 2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 238-241, 2021.
doi:10.1109/APWiMob51111.2021.9435206 Google Scholar
7. Lialios, D. I., C. L. Zekios, and S. V. Georgakopoulos, "A compact mmWave SIW blass matrix," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 --- Proceedings, 961-962, 2021. Google Scholar
8. Fakoukakis, F. and G. Kyriacou, "Novel Nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605 Google Scholar
9. Vallappil, A. K., M. K. A. Rahim, B. A. Khawaja, N. A. Murad, and M. G. Mustapha, "Butler matrix based beamforming networks for phased array antenna systems: A comprehensive review and future directions for 5G applications," IEEE Access, Vol. 9, 3970-3987, 2021.
doi:10.1109/ACCESS.2020.3047696 Google Scholar
10. Zhu, J., B. Peng, and S. Li, "Cavity-backed high-gain switch beam antenna array for 6-GHz applications," IET Microw. Antennas Propag., Vol. 11, No. 12, 1776-1781, 2017.
doi:10.1049/iet-map.2016.1129 Google Scholar
11. Rao, P. H., J. S. Sajin, and K. Kudesia, "Miniaturisation of switched beam array antenna using phase delay properties of CSRR-loaded transmission line," IET Microw. Antennas Propag., Vol. 12, No. 12, 1960-1966, 2018.
doi:10.1049/iet-map.2017.0978 Google Scholar
12. Klionovski, K., A. Shamim, and M. S. Sharawi, "5G antenna array with wide-angle beam steering and dual linear polarizations," 2017 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, 1469-1470, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072777 Google Scholar
13. Zaidel, D. N. A., S. K. A. Rahim, and N. Seman, "4 x 4 ultra wideband Butler matrix for switched beam array," Wireless Pers. Commun., Vol. 82, No. 4, 2471-2480, 2015.
doi:10.1007/s11277-015-2359-5 Google Scholar
14. Tian, G., J. P. Yang, and W. Wu, "A novel compact butler matrix without phase shifter," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 5, 306-308, 2014.
doi:10.1109/LMWC.2014.2306898 Google Scholar
15. Jeong, Y. S. and T. W. Kim, "Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 764-770, 2010.
doi:10.1109/TMTT.2010.2041571 Google Scholar
16. Bhowmik, P. and T. Moyra, "Modelling and validation of a compact planar Butler matrix by removing crossover," Wirel. Pers. Commun., 5121-5132, 2017.
doi:10.1007/s11277-017-4158-7 Google Scholar
17. Adamidis, G., I. Vardiambasis, M. Ioannidou, and T. Kapetanakis, "Design and implementation of single-layer 4 x 4 and 8 x 8 Butler matrices for multibeam antenna arrays," International Journal of Antennas and Propagation, Vol. 2019, 1-12, 2019.
doi:10.1155/2019/1645281 Google Scholar
18. Zheng, L. M., Z. T. Lu, B. W. Xu, and S. Y. Zheng, "Flexible millimeter-wave butler matrix based on the low-loss substrate integrated suspended line patch hybrid coupler with arbitrary phase difference and coupling coefficient," Int. J. RF Microw. Comput-Aided Eng., Vol. 31, No. 6, 2021.
doi:10.1002/mmce.22652 Google Scholar
19. Han, K., W. Li, and Y. Liu, "Flexible phase difference of 4 x 4 Butler matrix without phase-shifters and crossovers," Int. J. Antennas Propag., 1-7, 2019.
doi:10.1155/2019/4703161 Google Scholar
20. Messaoudene, I., H. Youssouf, M. Bilal, and M. Belazzoug, "Performance improvement of multilayer butler matrix for UWB beamforming antenna," Seminar on Detection Systems Architectures and Technologies (DAT), 1-4, 2017. Google Scholar
21. Jia, L., L. Zhang, and C. Zhang, "A dual-band and wide-band branch-line coupler with a large frequency ratio," Microw. Opt. Technol. Lett., Vol. 63, No. 1, 146-151, 2021.
doi:10.1002/mop.32592 Google Scholar
22. Bembarka, A., A. Tribak, H. Nachouane, L. Setti, and A. Mediavilla, "Wideband and electronically tunable microwave phase shifter using varactors with relative phase shifts up to 360◦," Int. J. Microw. Opt. Technol., Vol. 16, No. 13, 252-260, 2021. Google Scholar
23. Huong, H. T., "Beamforming phased array antenna toward indoor positioning applications," Advanced Radio Frequency Antennas for Modern Communication and Medical Systems, 2020. Google Scholar
24. Reddy, M. H., D. Siddle, and D. Sheela, "Design and implementation of a beam-steering antenna array using Butler matrix feed network for X-band applications," AEU Int. J. Electron Commun., Vol. 147, 154147, 2022.
doi:10.1016/j.aeue.2022.154147 Google Scholar
25. Jung, B.-R., Y.-B. Park, S.-Y. Kang, J.-H. Jung, J.-G. Ju, and Y. Yun, "Highly miniaturized on- hip 90◦ hybrid coupler employing transmission line with periodic structure," PIERS Proceedings, 1642-1644, Xi'an, China, March 22-26, 2010. Google Scholar
26. Substrate Rogers RO4000C series laminates data sheet, Rogers Corp., "http://www.rogerscorp.com," January 6, 2023.
27. Babale, S. A., S. K. Abdul Rahim, O. A. Barro, M. Himdi, and M. Khalily, "Single layered 4 x 4 butler matrix without phase-shifters and crossovers," IEEE Access, Vol. 6, 77289-77298, 2018.
doi:10.1109/ACCESS.2018.2881605 Google Scholar
28. Wen, J. M., C. K. Wang, W. Hong, Y. M. Pan, and S. Y. Zheng, "A wideband switched-beam antenna array fed by compact single-layer butler matrix," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 5130-5135, 2021.
doi:10.1109/TAP.2021.3060040 Google Scholar
29. Nedil, M., T. A. Denidni, and L. Talbi, "Novel butler matrix using CPW multilayer technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 499-507, 2006.
doi:10.1109/TMTT.2005.860490 Google Scholar
30. Bantavis, P. I., C. I. Kolitsidas, T. Empliouk, M. Le Roy, B. L. G. Jonsson, and G. A. Kyriacou, "A cost-effective wideband switched beam antenna system for a small cell base station," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6851-6861, 2018.
doi:10.1109/TAP.2018.2874494 Google Scholar
31. Mousavirazi, Z., V. Rafiei, and T. A. Denidni, "Beam-switching antenna array with dual-circular-polarized operation for WiMAX applications," AEU Int. J. Electron Commun., Vol. 137, 153796, 2021.
doi:10.1016/j.aeue.2021.153796 Google Scholar