Vol. 100
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-04-15
A Metallic 3D Printed Dual Frequency Dual Circularly Polarized Cross-Slot Waveguide Array Antenna with Improved Grating Lobe
By
Progress In Electromagnetics Research B, Vol. 100, 1-18, 2023
Abstract
A dual frequency dual circularly polarized cross-slot waveguide array working at 4.9 GHz and 5.8 GHz is proposed for wireless communication/airborne weather radar applications. Different from the traditional cross-slotted waveguide antenna, to improve space utilization, two sets of cross-slots are slit on both sides of the longitudinal axis of the waveguide's E-plane to realize dual-frequency operation. When the antenna operates in the TE10 mode, the cross-slots on each side radiate left-handed and right-handed circularly polarized electromagnetic waves at two different frequencies, respectively. To suppress grating lobes, phase perturbation structures are periodically loaded in the waveguide to tune the propagation phase constant, thereby changing the effective electric spacing between radiating elements while keeping the antenna a compact physical aperture. The proposed grating lobe suppression method avoids the dielectric loss caused by dielectric loading, eliminates the need for complex array arrangement, and achieves the grating lobe suppression at dual frequencies simultaneously. The metallic 3D printing technology, selective laser melting (SLM), is used to fabricate the antenna in one piece in one run using aluminum alloy. The proposed antenna has gains of 10 dBic and 14.5 dBic with 47% and 69% aperture efficiencies at 4.9 GHz and 5.8 GHz, respectively. It is a capable candidate for air-to-ground (ATG) communication applications.
Citation
Xianyu Guo, and Bing Zhang, "A Metallic 3D Printed Dual Frequency Dual Circularly Polarized Cross-Slot Waveguide Array Antenna with Improved Grating Lobe," Progress In Electromagnetics Research B, Vol. 100, 1-18, 2023.
doi:10.2528/PIERB23020806
References

1. Sakakibara, K., Y. Kimura, J. Hirokawa, M. Ando, and N. Goto, "A two-beam slotted leaky waveguide array for mobile reception of dual-polarization DBS," IEEE Trans. Vehicle Tech., Vol. 48, No. 1, 1-7, Jan. 1999.
doi:10.1109/25.740055        Google Scholar

2. Wang, W., S. Zhong, Y. Zhang, and X. Liang, "A broadband slotted ridge waveguide antenna array," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2416-2420, Aug. 2006.
doi:10.1109/TAP.2006.879216        Google Scholar

3. Montisci, G., "Design of circularly polarized waveguide slot linear arrays," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 3025-3029, Oct. 2006.
doi:10.1109/TAP.2006.882201        Google Scholar

4. Hosseininejad, S. and N. Komjani, "Optimum design of traveling-wave SIW slot array antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1971-1975, Apr. 2013.
doi:10.1109/TAP.2012.2233704        Google Scholar

5. Herranz, J., M. Ferrando, A. Valero, and B. Bernardo, "Novel asymmetric T-shaped radiating element for circularly-polarized waveguide slot arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7452-7461, Nov. 2021.
doi:10.1109/TAP.2021.3076277        Google Scholar

6. Le, G., "3D printed waveguide slot array antennas," IEEE Access, Vol. 4, 1258-1265, 2016.        Google Scholar

7. Hirokawa, J., M. Ando, N. Goto, N. Takahashi, T. Ojima, and M. Uematsu, "A single-layer slotted leaky waveguide array antenna for mobile reception of direct broadcast from satellite," IEEE Trans. Veh. Technol.,, Vol. 44, No. 4, 749-755, Nov. 1995.
doi:10.1109/25.467958        Google Scholar

8. Armstrong, M. and N. Alexopoulos, "On the design of a circularly polarized waveguide narrow wall linear array," IEEE Trans. Antennas Propag., Vol. 23, No. 2, 244-250, Mar. 1975.
doi:10.1109/TAP.1975.1141050        Google Scholar

9. Arismar, C., I. F. da Costa, S. Pinna, et al. "A novel dual-polarization and dual-band slotted waveguide antenna array for dual-use radars," Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), 1-4, Davos, Switzerland, 2016.        Google Scholar

10. Gatti, R. and R. Rossi, "A dual-polarization slotted waveguide array antenna with polarization-tracking capability and reduced sidelobe level," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1567-1572, Apr. 2016.
doi:10.1109/TAP.2016.2526645        Google Scholar

11. Costa, I., S. Cerqueira, and D. Spadoti, "Dual-band slotted waveguide antenna array for adaptive mm-wave 5G networks," Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), 1322-1325, Paris, France, 2017.        Google Scholar

12. Rafii, V., J. Nourinia, C. Ghobadi, J. Pourahmadazar, and B. Virdee, "Broadband circularly polarized slot antenna array using sequentially rotated technique for C-band applications," IEEE Antennas. Wireless Propag. Lett., Vol. 12, 128-131, 2013.
doi:10.1109/LAWP.2013.2237744        Google Scholar

13. Li, Y., Z. Zhang, C. Deng, Z. Feng, and M. Iskander, "2-D planar scalable dual-polarized series- fed slot antenna array using single substrate," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2280-2283, Apr. 2014.
doi:10.1109/TAP.2014.2300178        Google Scholar

14. Mondal, P. and A. Chakrabarty, "Slotted waveguide antenna with two radiation nulls," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3045-3049, Sept. 2008.
doi:10.1109/TAP.2008.928807        Google Scholar

15. Fang, Z., "The design of S-band low sidelobe rectangular waveguide slot phased array antenna," Proc. IEEE Asia-Paci c Microw. Conf. (APMC), 261-263, Singapore, 2019.        Google Scholar

16. Zhang, M., L. Li, and A. Ma, "Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 772-774, Nov. 2005.
doi:10.1109/LMWC.2005.858965        Google Scholar

17. Ferrando, M., J. Herranz, A. Valero, and V. Rodrigo, "Circularly polarized slotted waveguide array with improved axial ratio performance," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4144-4148, Sept. 2016.
doi:10.1109/TAP.2016.2586492        Google Scholar

18. Kim, Y. and H. Eom, "Mode-matching model for a longitudinally slotted waveguide array," IEEE Antennas Wireless Propag. Lett., Vol. 6, 328-331, 2007.
doi:10.1109/LAWP.2007.900952        Google Scholar

19. Yuan, W., X. Liang, L. Zhang, J. Geng, W. Zhu, and R. Jin, "Rectangular grating waveguide slot array antenna for SATCOM applications," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 3869-3880, Jun. 2019.
doi:10.1109/TAP.2019.2905784        Google Scholar

20. Lai, Q., W. Hong, Z. Kuai, Y. Zhang, and K. Wu, "Half-mode substrate integrated waveguide transverse slot array antennas," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1064-1072, Apr. 2009.
doi:10.1109/TAP.2009.2015799        Google Scholar

21. Stevenson, A., "Theory of slots in rectangular waveguides," J. Appl. Phys., Vol. 19, 24-38, 1948.
doi:10.1063/1.1697868        Google Scholar

22. Hirokawa, J., M. Ando, N. Goto, N. Takahashi, T. Ojima, and M. Uematsu, "A single-layer slotted leaky waveguide array antenna for mobile reception of direct broadcast from satellite," IEEE Trans. Veh. Technol., Vol. 44, No. 4, 749-755, Nov. 1995.
doi:10.1109/25.467958        Google Scholar

23. Ayoub, F., Y. Tawk, E. Ardelean, J. Costantine, S. Lane, and C. Christodoulou, "Cross-slotted waveguide array with dual circularly polarized radiation at W-band," IEEE Trans. Antennas Propag., Vol. 70, No. 1, 268-277, Jan. 2022.
doi:10.1109/TAP.2021.3090863        Google Scholar

24. Chatterjee, S., J. Das, and A. Majumder, "Circularly polarized offset center cross slotted array antenna at Ka band," Proc. IEEE MTT-S Int. Conf. Numer. Electromagn. Multiphys. Model. Optim. (NEMO), 1-4, Beijing, China, 2016.        Google Scholar

25. Sanchez-Olivares, P., J. Masa-Campos, and E. Garcia-Marin, "Dual-polarization and dual-band conical-beam array antenna based on dual-mode cross-slotted cylindrical waveguide," IEEE Access, Vol. 9, 94109-94121, 2021.
doi:10.1109/ACCESS.2021.3093204        Google Scholar

26. Sanchez-Olivares, P. and J. Masa-Campos, "Novel four cross slot radiator with tuning vias for circularly polarized SIW linear array," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2271-2275, Apr. 2014.
doi:10.1109/TAP.2014.2299823        Google Scholar

27. Yang, Q., et al. "Dual-polarized crossed slot array antenna designed on a single laminate for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 4120-4125, May 2020.
doi:10.1109/TAP.2019.2952244        Google Scholar

28. Yin, Y., M. Wang, N. Wu, and W. Wu, "Circularly polarized cross-slot antenna array fed by substrate integrated waveguide," Proc. 6th Asia-Paci c Conf. Antennas Propag. (APCAP), 1-3, Xi'an, China, 2017.        Google Scholar

29. Chatterjee, S. and A. Majumder, "Design of circularly polarized waveguide crossed slotted array antenna at Ka band," Proc. Int. Conf. Microw. Photon. (ICMAP), 1-2, Dhanbad, India, 2015.        Google Scholar

30. Simmons, A., "Circularly polarized slot radiators," IRE Trans. Antennas Propag., Vol. 5, No. 1, 31-36, Jan. 1957.
doi:10.1109/TAP.1957.1144463        Google Scholar

31. Sangster, A., "Circularly polarized linear waveguide array," IEEE Trans. Antennas Propag., Vol. 21, No. 5, 704-705, Sept. 1973.
doi:10.1109/TAP.1973.1140585        Google Scholar

32. Matsui, T., K. Sakakibara, Y. Ikeno, K. Kawaguchi, N. Kikuma, and H. Hirayama, "Control of effective wavelength in the waveguide for grating lobes suppression of slotted waveguide array," Proc. Int. Workshop Antenna Technol.: Small Antennas and Novel Metamaterials, 422-425, Chiba, Japan, 2008.
doi:10.1109/IWAT.2008.4511369        Google Scholar

33. Zhang, Q., Q. Zhang, H. Liu, and C. Chan, "Dual-band and dual-polarized leaky-wave antenna based on slotted SIW," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 3, 507-511, Mar. 2019.
doi:10.1109/LAWP.2019.2895339        Google Scholar

34. Bui, C., N. Nguyen-Trong, and T. Nguyen, "A planar dual-band and dual-sense circularly polarized microstrip patch leaky-wave antenna," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 12, 2162-2166, Dec. 2020.
doi:10.1109/LAWP.2020.3026067        Google Scholar

35. Rudramuni, K., B. Majumder, P. Rajanna, K. Kandasamy, and Q. Zhang, "Dual-band asymmetric leaky-wave antennas for circular polarization and simultaneous dual beam scanning," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1843-1852, Apr. 2021.
doi:10.1109/TAP.2020.3026898        Google Scholar