Vol. 110
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-05-11
Compact Planer Dual Band Circular Shaped Polarization-Dependent Electromagnetic Band Gap Structure to Reduce the RCS
By
Progress In Electromagnetics Research Letters, Vol. 110, 93-99, 2023
Abstract
In this paper, a compact planar dual-band circular-shaped polarization-dependent electromagnetic band gap (DCS-PDEBG) structure operates at 2.97 GHz and 7.77 GHz in y-direction and 3.14 GHz and 10.90 GHz in the x-direction. A proposed DCS-PDEBG structure consists of a circular patch inside a square patch with a slot at the center, and the established arrangement gives additional capacitance and compact size. The simulation of the DCS-PDEBG is carried out using the Finite Element Method (FEM) of Ansys High-Frequency Simulator (HFSS) and experimentally validated. A truncated microstrip line (TML) method is used to measure the band gap of the proposed planar DCS-PDEBG structure. Experimental results agree well with simulation one. The periodic size of proposed DCS-PDEBG structure is 0.13λ2.97 GHz × 0.13λ2.97 GHz, which is a good candidate where compact size is highly desired.
Citation
Rajesh Bhagwanrao Morey, and Sunil N. Pawar, "Compact Planer Dual Band Circular Shaped Polarization-Dependent Electromagnetic Band Gap Structure to Reduce the RCS," Progress In Electromagnetics Research Letters, Vol. 110, 93-99, 2023.
doi:10.2528/PIERL23021803
References

1. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603

2. Bhavarthe, P. P, S. S. Rathod, and K. T. V. Reddy, "A compact two-via hammer spanner-type polarization-dependent electromagnetic bandgap structure," IEEE Microw. and Wireless Compon. Lett., Vol. 28, No. 4, 284-286, 2018.
doi:10.1109/LMWC.2018.2809042

3. Han, Z.-J., W. Song, and X.-Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 1631-1634, 2017.
doi:10.1109/LAWP.2017.2658195

4. Dalal, P. and S. Dhull, "Eight-shaped polarization-dependent electromagnetic bandgap structure and its application as polarization reflector," Int. J. Microw. Wirel. Technol., Vol. 14, No. 1, 34-42, 2022.
doi:10.1017/S1759078721000271

5. Ullah, S., J. A. Flint, and R. D. Seager, "Polarisation dependent EBG surface with an inclined sheet via," Loughborough Antennas and Propagation Conference, 637-640, 2009.

6. Yang, F. and Y. Rahmat-Samii, "Polarization-dependent electromagnetic band gap (PDEBG) structures: Designs and applications," Microw. Opt. Technol. Lett., Vol. 41, 439-444, 2004.
doi:10.1002/mop.20164

7. Huang, S. Y. and Y. H. Lee, "Compact U-shaped dual planar EBG microstrip low-pass filter," IEEE Trans. Microw. Theory, Vol. 53, No. 12, 3799-3805, 2005.
doi:10.1109/TMTT.2005.859865

8. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, 2009.
doi:10.1109/TAP.2009.2014527

9. Yi, H. and S. Qu, "A novel dual-band circularly polarized antenna based on electromagnetic band-gap structure," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1149-1152, 2013.
doi:10.1109/LAWP.2013.2281060

10. Chen, W., C. A. Balanis, and C. R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4133-4138, 2016.
doi:10.1109/TAP.2016.2583505

11. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarization-dependent using artificial ground structure with rectangular unit cells," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656

12. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "A circular polarization reconfigurable antenna based on reconfigurable electromagnetic band-gap structures," 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 151-153, 2014.

13. Lamminen, A. E. I., A. R. Vimpari, and J. Saily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Trans. Antennas Propag. Lett., Vol. 57, No. 10, 2904-2912, 2009.
doi:10.1109/TAP.2009.2029311

14. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 1275-1278, 2009.
doi:10.1109/LAWP.2009.2037168

15. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440

16. Peng, L., C.-L. Ruan, and Z.-Q. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 489-491, 2010.
doi:10.1109/LMWC.2010.2051536

17. Galarregui, J. C. I., A. T. Pereda, J. L. M. De Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broad band radar cross section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915