1. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603 Google Scholar
2. Bhavarthe, P. P, S. S. Rathod, and K. T. V. Reddy, "A compact two-via hammer spanner-type polarization-dependent electromagnetic bandgap structure," IEEE Microw. and Wireless Compon. Lett., Vol. 28, No. 4, 284-286, 2018.
doi:10.1109/LMWC.2018.2809042 Google Scholar
3. Han, Z.-J., W. Song, and X.-Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 1631-1634, 2017.
doi:10.1109/LAWP.2017.2658195 Google Scholar
4. Dalal, P. and S. Dhull, "Eight-shaped polarization-dependent electromagnetic bandgap structure and its application as polarization reflector," Int. J. Microw. Wirel. Technol., Vol. 14, No. 1, 34-42, 2022.
doi:10.1017/S1759078721000271 Google Scholar
5. Ullah, S., J. A. Flint, and R. D. Seager, "Polarisation dependent EBG surface with an inclined sheet via," Loughborough Antennas and Propagation Conference, 637-640, 2009. Google Scholar
6. Yang, F. and Y. Rahmat-Samii, "Polarization-dependent electromagnetic band gap (PDEBG) structures: Designs and applications," Microw. Opt. Technol. Lett., Vol. 41, 439-444, 2004.
doi:10.1002/mop.20164 Google Scholar
7. Huang, S. Y. and Y. H. Lee, "Compact U-shaped dual planar EBG microstrip low-pass filter," IEEE Trans. Microw. Theory, Vol. 53, No. 12, 3799-3805, 2005.
doi:10.1109/TMTT.2005.859865 Google Scholar
8. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, 2009.
doi:10.1109/TAP.2009.2014527 Google Scholar
9. Yi, H. and S. Qu, "A novel dual-band circularly polarized antenna based on electromagnetic band-gap structure," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1149-1152, 2013.
doi:10.1109/LAWP.2013.2281060 Google Scholar
10. Chen, W., C. A. Balanis, and C. R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4133-4138, 2016.
doi:10.1109/TAP.2016.2583505 Google Scholar
11. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarization-dependent using artificial ground structure with rectangular unit cells," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656 Google Scholar
12. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "A circular polarization reconfigurable antenna based on reconfigurable electromagnetic band-gap structures," 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 151-153, 2014. Google Scholar
13. Lamminen, A. E. I., A. R. Vimpari, and J. Saily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Trans. Antennas Propag. Lett., Vol. 57, No. 10, 2904-2912, 2009.
doi:10.1109/TAP.2009.2029311 Google Scholar
14. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 1275-1278, 2009.
doi:10.1109/LAWP.2009.2037168 Google Scholar
15. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440 Google Scholar
16. Peng, L., C.-L. Ruan, and Z.-Q. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 489-491, 2010.
doi:10.1109/LMWC.2010.2051536 Google Scholar
17. Galarregui, J. C. I., A. T. Pereda, J. L. M. De Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broad band radar cross section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, 2013.
doi:10.1109/TAP.2013.2282915 Google Scholar