Vol. 109
Latest Volume
All Volumes
2023-03-27
SAR Analysis of Hexagonal-Shaped Slot Loaded Patch Antenna for Hyperthermia Application at 434 MHz
By
Progress In Electromagnetics Research Letters, Vol. 109, 119-125, 2023
Abstract
In this article, a low-profile microstrip patch antenna using an FR-4 substrate with relative permittivity of 4.4 and thickness of 1.6 mm is designed. On the top of a substrate, it consists of one metallic hexagonal patch and a metallic-fed hexagonal ringtone, and the ground part of the structure is covered with orthogonal rectangular slots. The designed structure operates in the ISM band of 434 MHz, and the overall size of the antenna is 124x124x1.6 mm3. The antenna provides a valid SAR input profile.
Citation
Azharuddin Khan, and Amit Kumar Singh, "SAR Analysis of Hexagonal-Shaped Slot Loaded Patch Antenna for Hyperthermia Application at 434 MHz ," Progress In Electromagnetics Research Letters, Vol. 109, 119-125, 2023.
doi:10.2528/PIERL23022002
References

1. Correia, D., H. Petra Kok, M. de Greef, A. Bel, N. van Wieringen, and J. Crezee, "Body conformal antennas for superficial hyperthermia: The impact of bending contact exible microstrip applicators on their electromagnetic behavior," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 12, 2917-2926, 2009.
doi:10.1109/TBME.2009.2029081

2. Horsman, M. R. and J. Overgaard, "Hyperthermia: A potent enhancer of radiotherapy," Clinical Oncology, Vol. 19, No. 6, 418-426, Aug. 2007.
doi:10.1016/j.clon.2007.03.015

3. Van Esser, S. and R. Van Hillegersberg, "Minimally invasive ablative therapies for invasive breast carcinomas: An overview of current literature," World J. Surg., Vol. 31, 2284-2292, 2007.
doi:10.1007/s00268-007-9278-x

4. Yang, X., J. Du, and Y. Liu, "Advances in hyperthermia technology," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 2005.

5. Islk, O., E. Korkmaz, and B. Tiiretken, "Antenna arrangement considerations for microwave hyperthermia applications," General Assembly and Scientific Symposium, 2011.

6. Neufeld, E., M. Pauildes, M. Capstick, G. V. Rhoon, and N. Kuster, "Recent advances in hyperthermia cancer treatment," Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, Apr. 2010.

7. Van der Zee, J., "Heating the patient: A promising approach," Annals of Oncology, Vol. 13, No. 8, 1173-1184, 2002.
doi:10.1093/annonc/mdf280

8. Stauffer, P. R., "Evolving technology for thermal therapy of cancer," Int. J. Hyperthermia, Vol. 21, 731-744, 2005.
doi:10.1080/02656730500331868

9. Hand, J. W. and J. R. James, Physical Techniques in Clinical Hyperthermia, Ch. 4, Research Studies Press, Letchworth, U.K., 1986.

10. King, R. W. P., B. S. Trembley, and J. W. Strohbein, "The electromagnetic field of an insulated antenna in a conducting or dielectric medium," IEEE Trans. Microw. Theory Tech., Vol. 31, No. 7, 574-583, Jul. 1983.
doi:10.1109/TMTT.1983.1131547

11. Curto, S., P. McEvoy, X. Bao, and M. J. Ammann, "Compact patch antenna for electromagnetic interaction with human tissue at 434 MHz," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2564-2571, 2009.
doi:10.1109/TAP.2009.2027040

12. Bahl, I. J., P. Bhartia, and P. Bhartia, Microstrip Antennas, Artech House, 1980.

13. Ansari, J., A. Mishra, and B. Vishvakarma, "Half U-slot loaded semicircular disk patch antenna for GSM mobile phone and optical communications," Progress In Electromagnetics Research C, Vol. 18, 31-45, 2011.
doi:10.2528/PIERC10100704

14. Wolf, E. A., Antenna Analysis, Artech House, Narwood, USA, 1998.

15. Curto, S. and M. J. Ammann, "Electromagnetic coupling mechanism in a layered human tissue as a benchmark for 434 MHz RF hyperthermia applicators," Proc. IEEE Antennas Propag. Society Int. Symp., 3185-3188, Honolulu, HI, Jun. 2007.

16. Christ, A., A. Klingenbock, T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2188-2195, May 2006.
doi:10.1109/TMTT.2006.872789

17. Christ, A., T. Samaras, A. Klingenbock, and N. Kuster, "Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6000 MHz," Phys. Med. Biol., Vol. 51, No. 19, 4951-4965, Sep. 2006.
doi:10.1088/0031-9155/51/19/014

18. Narang, N., S. K. Dubey, P. S. Negi, and V. N. Ojha, "Precise E-field measurement inside TEM cell at GSM frequencies using microstrip E-field probe," 2016 International Conference on Signal Processing and Communication (ICSC), IEEE, 2016.

19. Narang, N., S. K. Dubey, P. S. Negi, and V. N. Ojha, "A coplanar microstrip antenna as a dosimetric E-field probe for GSM frequencies," MAPAN, Vol. 32, No. 2, 143-147, 2017.
doi:10.1007/s12647-016-0198-9

20. Younesiraad, H., M. Bemani, and S. Nikmehr, "A dual-band slotted square ring patch antenna for local hyperthermia applications," Progress In Electromagnetics Research Letters, Vol. 71, 97-102, 2017.
doi:10.2528/PIERL17090503

21. Halheit, H., A. V. Vorst, S. Tedjini, and R. Touhami, "Flexible dual-frequency applicator for local hyperthermia," International Journal of Antennas and Propagation, Vol. 2012, 1-7, 2012.
doi:10.1155/2012/389214