Vol. 132
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-28
Realization of Broadband Negative Refractive Index in Terahertz Band by Multilayer Fishnet Metamaterial Approach
By
Progress In Electromagnetics Research C, Vol. 132, 159-170, 2023
Abstract
In the present study, a broad negative refractive index (NRI) performance is achieved in the terahertz frequency range (0.6-0.9 THz) through the design of multi-layered fishnet metamaterial (FMM). Herein, the conventional fishnet structure is modified by smoothing the sharp corners to reduce the electric field concentration and improve NRI. At corner radius, r = 30 µm, an effective refractive index of -11.14 is achieved with lower electric field concentration at the corners. A multilayer structure of up to 40 layers is studied to achieve a broad NRI frequency response. The frequency band of NRI response is improved from 0.034 THz for a single layer structure to 0.178 THz for 28 layers structure, almost 6 times the original bandwidth. With the increase in the number of layers, improvement in NRI and Figure of Merit (FOM) is observed, and maximum NRI and FOM values of -87.5 and 12.67 are achieved at 28 layers. This multilayer broadband design can surpass tunable response of available electro-optic materials. With an optimal combination of NRI and FOM, the presented multilayer approach can achieve a low-loss, broadband performance.
Supplementary Information
Citation
Sudarshan Kalel, and Wei-Chih Wang, "Realization of Broadband Negative Refractive Index in Terahertz Band by Multilayer Fishnet Metamaterial Approach," Progress In Electromagnetics Research C, Vol. 132, 159-170, 2023.
doi:10.2528/PIERC23022302
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Parimi, P. V., W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by at lens using negative refraction," Nature, Vol. 426, No. 6965, 404-404, 2003.
doi:10.1038/426404a

3. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28

4. Atre, A. C., A. Garcia-Etxarri, H. Alaeian, and J. A. Dionne, "A broadband negative index metamaterial at optical frequencies," Advanced Optical Materials, Vol. 1, No. 4, 327-333, 2013.
doi:10.1002/adom.201200022

5. Bang, S., S. So, and J. Rho, "Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials," Scientific Reports, Vol. 9, No. 1, 14093, 2019.
doi:10.1038/s41598-019-50434-3

6. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402

7. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Scientific Reports, Vol. 8, No. 1, 9843, 2018.
doi:10.1038/s41598-018-28221-3

8. Ling, F., Z. Zhong, Y. Zhang, R. Huang, and B. Zhang, "Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level," Optics Express, Vol. 26, No. 23, 30085-30099, 2018.
doi:10.1364/OE.26.030085

9. Nguyen, H. T., T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, "Broadband negative refractive index obtained by plasmonic hybridization in metamaterials," Applied Physics Letters, Vol. 109, No. 22, 221902, 2016.
doi:10.1063/1.4968802

10. Rasad, A., H. T. Yudistira, F. Qalbina, A. G. Saputro, and A. Faisal, "Multilayer flexible metamaterials based on circular shape with negative refractive index at microwave spectrum," Sensors and Actuators A: Physical, Vol. 332, 113208, 2021.
doi:10.1016/j.sna.2021.113208

11. Zhu, C., C.-H. Liang, and L. Li, "Broadband negative index metamaterials with low-loss," AEU --- International Journal of Electronics and Communications, Vol. 65, No. 9, 724-727, 2011.
doi:10.1016/j.aeue.2010.10.004

12. Aydin, K., Z. Li, L. Sahin, and E. Ozbay, "Negative phase advance in polarization independent, multi-layer negative-index metamaterials," Optics Express, Vol. 16, No. 12, 8835-8844, 2008.
doi:10.1364/OE.16.008835

13. Cho, H., Y. Yang, D. Lee, S. So, and J. Rho, "Experimental demonstration of broadband negative refraction at visible frequencies by critical layer thickness analysis in a vertical hyperbolic metamaterial," Nanophotonics, Vol. 10, No. 15, 3871-3877, 2021.
doi:10.1515/nanoph-2021-0337

14. Li, W., Q. Meng, R. Huang, Z. Zhong, and B. Zhang, "Thermally tunable broadband terahertz metamaterials with negative refractive index," Optics Communications, Vol. 412, 85-89, 2018.
doi:10.1016/j.optcom.2017.11.076

15. Cooper, K. B., R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, "THz imaging radar for standoff personnel screening," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 169-182, 2011.
doi:10.1109/TTHZ.2011.2159556

16. Ferguson, B. and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, No. 1, 26-33, 2002.
doi:10.1038/nmat708

17. Muthuramalingam, K. and W.-C. Wang, "Non-destructive evaluation of the medical device packages using the terahertz time-domain spectroscopy," SPIE Smart Structures + Nondestructive Evaluation, Vol. 12048, SPIE, 2022.

18. Cheng, Y. T., Y. H. Chiang, C. Y. Kao, H. H. Chen, and W. C. Wang, "THz gas detection using cellulose nanoporous foam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018.

19. Davies, A. G., A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Materials Today, Vol. 11, No. 3, 18-26, 2008.
doi:10.1016/S1369-7021(08)70016-6

20. Wang, W.-C. and P. Garu, "Design of an ultra-wideband omnidirectional and polarization insensitive ower petal antenna for potential ambient electromagnetic energy harvesting applications," Scientific Reports, Vol. 12, No. 1, 6096, 2022.
doi:10.1038/s41598-022-09991-3

21. Lin, H.-R. and W.-C. Wang, "Midinfrared radiation energy harvesting device," Journal of Photonics for Energy, Vol. 3, 038001, 2017.
doi:10.1117/1.JPE.7.038001

22. Du, Q.-J., J.-S. Liu, K.-J. Wang, X.-N. Yi, and H.-W. Yang, "Dual-band Terahertz left-handed metamaterial with fishnet structure," Chinese Physics Letters, Vol. 28, No. 1, 014201, 2011.
doi:10.1088/0256-307X/28/1/014201

23. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

24. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

25. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [Education Column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515

26. Hsieh, F.-J. and W.-C. Wang, "Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models," Journal of Applied Physics, Vol. 112, No. 6, 064907, 2012.
doi:10.1063/1.4752753

27. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520

28. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Applied Physics Letters, Vol. 102, No. 15, 151903, 2013.
doi:10.1063/1.4801648

29. Liu, T., S. Ma, B. Yang, S. Xiao, and L. Zhou, "Effective-medium theory for multilayer metamaterials: Role of near-field corrections," Physical Review B, Vol. 102, No. 17, 174208, 2020.
doi:10.1103/PhysRevB.102.174208

30. Jeong, D.-Y., Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, "Electro-optical response of the ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer," Journal of Applied Physics, Vol. 96, No. 1, 316-319, 2004.
doi:10.1063/1.1757032

31. Mishu, S. J., R. A. K. Moushi, N. Dhar, and M. A. Rahman, "Design of a dual-band terahertz planar double-negative metamaterial with near zero refractive index property," 2021 International Conference on Science & Contemporary Technologies (ICSCT), 2021.

32. Zhang, S., Z. Wei, L. Xu, J. Xu, S. Ouyang, and Y. Shen, "Plasmonic fishnet structures for dual band THz left-handed metamaterials," Photonics, Vol. 8, No. 4, 116, 2021.
doi:10.3390/photonics8040116

33. Wegrowski, A., W.-C. Wang, and C. Tsui, "Three cases of discontinuous refractive index in metamaterial study," Scientific Reports, Vol. 12, No. 1, 3558, 2022.
doi:10.1038/s41598-022-07537-1