1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Parimi, P. V., W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by at lens using negative refraction," Nature, Vol. 426, No. 6965, 404-404, 2003.
doi:10.1038/426404a Google Scholar
3. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
4. Atre, A. C., A. Garcia-Etxarri, H. Alaeian, and J. A. Dionne, "A broadband negative index metamaterial at optical frequencies," Advanced Optical Materials, Vol. 1, No. 4, 327-333, 2013.
doi:10.1002/adom.201200022 Google Scholar
5. Bang, S., S. So, and J. Rho, "Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials," Scientific Reports, Vol. 9, No. 1, 14093, 2019.
doi:10.1038/s41598-019-50434-3 Google Scholar
6. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402 Google Scholar
7. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Scientific Reports, Vol. 8, No. 1, 9843, 2018.
doi:10.1038/s41598-018-28221-3 Google Scholar
8. Ling, F., Z. Zhong, Y. Zhang, R. Huang, and B. Zhang, "Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level," Optics Express, Vol. 26, No. 23, 30085-30099, 2018.
doi:10.1364/OE.26.030085 Google Scholar
9. Nguyen, H. T., T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, "Broadband negative refractive index obtained by plasmonic hybridization in metamaterials," Applied Physics Letters, Vol. 109, No. 22, 221902, 2016.
doi:10.1063/1.4968802 Google Scholar
10. Rasad, A., H. T. Yudistira, F. Qalbina, A. G. Saputro, and A. Faisal, "Multilayer flexible metamaterials based on circular shape with negative refractive index at microwave spectrum," Sensors and Actuators A: Physical, Vol. 332, 113208, 2021.
doi:10.1016/j.sna.2021.113208 Google Scholar
11. Zhu, C., C.-H. Liang, and L. Li, "Broadband negative index metamaterials with low-loss," AEU --- International Journal of Electronics and Communications, Vol. 65, No. 9, 724-727, 2011.
doi:10.1016/j.aeue.2010.10.004 Google Scholar
12. Aydin, K., Z. Li, L. Sahin, and E. Ozbay, "Negative phase advance in polarization independent, multi-layer negative-index metamaterials," Optics Express, Vol. 16, No. 12, 8835-8844, 2008.
doi:10.1364/OE.16.008835 Google Scholar
13. Cho, H., Y. Yang, D. Lee, S. So, and J. Rho, "Experimental demonstration of broadband negative refraction at visible frequencies by critical layer thickness analysis in a vertical hyperbolic metamaterial," Nanophotonics, Vol. 10, No. 15, 3871-3877, 2021.
doi:10.1515/nanoph-2021-0337 Google Scholar
14. Li, W., Q. Meng, R. Huang, Z. Zhong, and B. Zhang, "Thermally tunable broadband terahertz metamaterials with negative refractive index," Optics Communications, Vol. 412, 85-89, 2018.
doi:10.1016/j.optcom.2017.11.076 Google Scholar
15. Cooper, K. B., R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, "THz imaging radar for standoff personnel screening," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 169-182, 2011.
doi:10.1109/TTHZ.2011.2159556 Google Scholar
16. Ferguson, B. and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, No. 1, 26-33, 2002.
doi:10.1038/nmat708 Google Scholar
17. Muthuramalingam, K. and W.-C. Wang, "Non-destructive evaluation of the medical device packages using the terahertz time-domain spectroscopy," SPIE Smart Structures + Nondestructive Evaluation, Vol. 12048, SPIE, 2022. Google Scholar
18. Cheng, Y. T., Y. H. Chiang, C. Y. Kao, H. H. Chen, and W. C. Wang, "THz gas detection using cellulose nanoporous foam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018. Google Scholar
19. Davies, A. G., A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Materials Today, Vol. 11, No. 3, 18-26, 2008.
doi:10.1016/S1369-7021(08)70016-6 Google Scholar
20. Wang, W.-C. and P. Garu, "Design of an ultra-wideband omnidirectional and polarization insensitive ower petal antenna for potential ambient electromagnetic energy harvesting applications," Scientific Reports, Vol. 12, No. 1, 6096, 2022.
doi:10.1038/s41598-022-09991-3 Google Scholar
21. Lin, H.-R. and W.-C. Wang, "Midinfrared radiation energy harvesting device," Journal of Photonics for Energy, Vol. 3, 038001, 2017.
doi:10.1117/1.JPE.7.038001 Google Scholar
22. Du, Q.-J., J.-S. Liu, K.-J. Wang, X.-N. Yi, and H.-W. Yang, "Dual-band Terahertz left-handed metamaterial with fishnet structure," Chinese Physics Letters, Vol. 28, No. 1, 014201, 2011.
doi:10.1088/0256-307X/28/1/014201 Google Scholar
23. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104 Google Scholar
24. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
25. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [Education Column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515 Google Scholar
26. Hsieh, F.-J. and W.-C. Wang, "Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models," Journal of Applied Physics, Vol. 112, No. 6, 064907, 2012.
doi:10.1063/1.4752753 Google Scholar
27. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520 Google Scholar
28. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Applied Physics Letters, Vol. 102, No. 15, 151903, 2013.
doi:10.1063/1.4801648 Google Scholar
29. Liu, T., S. Ma, B. Yang, S. Xiao, and L. Zhou, "Effective-medium theory for multilayer metamaterials: Role of near-field corrections," Physical Review B, Vol. 102, No. 17, 174208, 2020.
doi:10.1103/PhysRevB.102.174208 Google Scholar
30. Jeong, D.-Y., Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, "Electro-optical response of the ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer," Journal of Applied Physics, Vol. 96, No. 1, 316-319, 2004.
doi:10.1063/1.1757032 Google Scholar
31. Mishu, S. J., R. A. K. Moushi, N. Dhar, and M. A. Rahman, "Design of a dual-band terahertz planar double-negative metamaterial with near zero refractive index property," 2021 International Conference on Science & Contemporary Technologies (ICSCT), 2021. Google Scholar
32. Zhang, S., Z. Wei, L. Xu, J. Xu, S. Ouyang, and Y. Shen, "Plasmonic fishnet structures for dual band THz left-handed metamaterials," Photonics, Vol. 8, No. 4, 116, 2021.
doi:10.3390/photonics8040116 Google Scholar
33. Wegrowski, A., W.-C. Wang, and C. Tsui, "Three cases of discontinuous refractive index in metamaterial study," Scientific Reports, Vol. 12, No. 1, 3558, 2022.
doi:10.1038/s41598-022-07537-1 Google Scholar