Vol. 132
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-30
Design of Miniaturized Tri-Band Wearable Antenna Based on Characteristic Mode Theory
By
Progress In Electromagnetics Research C, Vol. 132, 187-203, 2023
Abstract
In this study, a tri-band wearable antenna with a metal frame of 36×36×6.6 mm3 is designed, fabricated, and measured based on the characteristic mode theory. By analyzing the current and electric field distribution of the characteristic mode, the antenna is determined to be fed by a T-coupled structure. Moreover, a circular ring ground structure is added to the initial elliptical model structure to generate a new resonance in the n78 band. On the other hand, the current's path is changed by etching a rectangular slot, allowing the high-frequency resonance mode to be shifted to the right. Simulated and measured results show that the proposed antenna covers Bluetooth/Wi-Fi (2.4G, 5.8G) and N78 frequency bands, which can be respectively used for connecting a watch to a mobile phone, accessing the Internet and making phone calls. Furthermore, the antenna has a maximum peak gain of 4.11 dBi in free space and 6.9 dBi when being placed on the wrist, with a Specific Absorption Rate (SAR) lower than international standards, making it suitable for wearable devices.
Citation
Mingqing Wang, Zhonggen Wang, Ming Yang, Wenyan Nie, and Han Lin, "Design of Miniaturized Tri-Band Wearable Antenna Based on Characteristic Mode Theory," Progress In Electromagnetics Research C, Vol. 132, 187-203, 2023.
doi:10.2528/PIERC23022602
References

1. Skrivervik, K. and J. Trajkovikj, "Some considerations on wearable antennas," Int. Conf. Appl. Electromagn. Commun. (ICECom) 2013, 1-3, Dubrovnik, Croatia, 2013.        Google Scholar

2. Lyons, K. and H. Profita, "The multiple dispositions of on-body and wearable devices," IEEE Pervasive Computing, Vol. 13, No. 4, 24-31, 2014.
doi:10.1109/MPRV.2014.79        Google Scholar

3. Hamouda, H., P. Le Thuc, R. Staraj, and G. Kossiavas, "Dualband MICS/WIFI small antenna for portable applications in telemedicine," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2081-2082, Orlando, FL, USA, 2013.        Google Scholar

4. Salonen, P., L. Sydanheimo, M. Keskilammi, and M. Kivikoski, "A small planar inverted-F antenna for wearable applications," Digest of Papers. Third International Symposium on Wearable Computers, 95-100, San Francisco, CA, USA, 1999.        Google Scholar

5. Marie, C., D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, "Smart wearable systems: Current status and future challenges," Artificial Intelligence in Medicine, Vol. 56, No. 3, 137-156, 2012.
doi:10.1016/j.artmed.2012.09.003        Google Scholar

6. Rungtai, L. and J. G. Kreifeldt, "Ergonomics in wearable computer design," International Journal of Industrial Ergonomics, Vol. 27, No. 4, 259-269, 2001.
doi:10.1016/S0169-8141(00)00055-X        Google Scholar

7. Gharode, D., A. Nella, and M. Rajagopal, "State-of-art design aspects of wearable, mobile, and flexible antennas for modern communication wireless systems," Int. J. Commun. Syst., Vol. 34, No. 15, 1-48, 2021.
doi:10.1002/dac.4934        Google Scholar

8. Cure, D., T. M. Weller, and F. A. Miranda, "Study of a low-profile 2.4-GHz planar dipole antenna using a high-impedance surface with 1-D varactor tuning," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 506-515, 2013.
doi:10.1109/TAP.2012.2223435        Google Scholar

9. Pandey, Q., K. K. Katare, A. Biswas, and M. J. Akhtar, "Frequency switchable AMC loaded folded slot antenna for dual band operation," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, India, 2017.        Google Scholar

10. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
doi:10.1109/TAP.2009.2014527        Google Scholar

11. Ta, S. X. and I. Park, "Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC surface," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 587-590, 2014.        Google Scholar

12. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 735-742, 2012.
doi:10.1109/TAP.2011.2173152        Google Scholar

13. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 524-531, 2013.
doi:10.1109/TAP.2012.2223449        Google Scholar

14. Palukuru, V. K., A. Pekonen, V. Pynttari, R. Makinen, J. Hagberg, and H. Jantunen, "An inkjet-printed inverted-F antenna for 2.4-GHz wrist applications," Microw. Opt. Technol. Lett., Vol. 51, No. 12, 2936-2938, 2009.
doi:10.1002/mop.24777        Google Scholar

15. Chen, Y.-S. and T.-Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1144-1147, 2016.
doi:10.1109/LAWP.2015.2496366        Google Scholar

16. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, May 1971.
doi:10.1109/TAP.1971.1139935        Google Scholar

17. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, September 1971.
doi:10.1109/TAP.1971.1139999        Google Scholar

18. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, September 1971.
doi:10.1109/TAP.1971.1139990        Google Scholar

19. Cabedo, F. M., A. Valero-Nogueira, E. Antonino-Daviu, and M. Ferrando-Bataller, "Modal analysis of a radiating slotted PCB for mobile handsets," 2006 First European Conference on Antennas and Propagation, 1-6, Nice, France, 2006.        Google Scholar

20. Antonino, D., E. Suarez-Fajardo, C. A., M. Cabedo-Fabres, and M. Ferrando-Bataller, "Wideband antenna for mobile terminals based on the handset PCB resonance," Microw. Opt. Technol. Lett., Vol. 48, No. 7, 1408-1411, 2006.
doi:10.1002/mop.21654        Google Scholar

21. Deng, C., Z. Feng, and S. V. Hum, "MIMO mobile handset antenna merging characteristic modes for increased bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2660-2667, July 2016.
doi:10.1109/TAP.2016.2537358        Google Scholar

22. Manteuffel, D. and R. Martens, "Compact multimode multielement antenna for indoor UWB massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2689-2697, July 2016.
doi:10.1109/TAP.2016.2537388        Google Scholar

23. Wen, D., Y. Hao, H. Wang, and H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1437-1447, 2019.
doi:10.1109/TAP.2018.2884849        Google Scholar

24. Liu, X. Z., G. Yu, J. Chao, H. H. Zhang, and Y. Liu, "TCM-based low-SAR MIMO antenna for smartwatch applications," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, 2021.        Google Scholar

25. Zhang, X., et al., "Analysis and design of stable-performance circularly-polarized antennas based on coupled radiators for smart watches," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5312-5323, 2022.
doi:10.1109/TAP.2022.3146890        Google Scholar

26. Yan, Y., J. Ouyang, A. Sharif, Q. Wang, and Y. Ban, "Dual-loop antenna with band-stop circuit for GPS/Bluetooth metal-rimmed smartwatch applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 455-456, Boston, MA, USA, 2018.        Google Scholar

27. Su, S.-W. and Y.-T. Hsieh, "Integrated metal-frame antenna for smartwatch wearable device," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3301-3305, July 2015.
doi:10.1109/TAP.2015.2428736        Google Scholar

28. Zhang, H. H., G. G. Yu, Y. Liu, Y. X. Fang, G. Shi, and S. Wang, "Design of low-SAR mobile phone antenna: Theory and applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 698-707, 2021.
doi:10.1109/TAP.2020.3016420        Google Scholar

29. Gao, X., Z. Zhang, W. Chen, Z. Feng, M. F. Iskander, and A.-P. Zhao, "A novel wrist wear dual-band diversity antenna," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, North Charleston, SC, USA, 2009.        Google Scholar

30. Trinh, L. H., T. Q. K. Nguyen, H. L. Tran, P. C. Nguyen, N. V. Truong, and F. Ferrero, "Low-profile horizontal omni-directional antenna for LoRa wearable devices," 2017 International Conference on Advanced Technologies for Communications (ATC), 136-139, Quy Nhon, Vietnam, 2017.        Google Scholar

31. Kwak, S. I., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body-SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2017.
doi:10.1109/TEMC.2016.2593493        Google Scholar

32. Flores-Cuadras, J. R., J. L. Medina-Monroy, R. A. Chavez-Perez, and H. Lobato-Morales, "Novel ultra-wideband flexible antenna for wearable wrist worn devices with 4G LTE communications," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 777-783, 2017.
doi:10.1002/mop.30393        Google Scholar

33. Su, S.-W. and Y.-T. Hsieh, "Integrated LDS antenna for B13 and B4/B3/B2/B1 LTE operation in smartwatch," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 869-873, 2017.
doi:10.1002/mop.30415        Google Scholar

34. Hong, C.-Y. and S.-H. Yeh, "Cellular antenna design with metallic housing for wearable device," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 419-420, Kaohsiung, Taiwan, 2016.        Google Scholar

35. Xiao, B., H. Wong, D. Wu, and K. L. Yeung, "Design of small multiband full-screen smartwatch antenna for IoT applications," IEEE Internet of Things Journal, Vol. 8, No. 24, 17724-17733, 2021.
doi:10.1109/JIOT.2021.3082535        Google Scholar

36. Zhang, H. H., et al., "Design of low-SAR and high on-body efficiency tri-band smartwatch antenna utilizing the theory of characteristic modes of composite PEC-lossy dielectric structures," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1913-1918, 2023.
doi:10.1109/TAP.2022.3222637        Google Scholar

37. Chen, W.-S., G.-Q. Lin, G.-R. Zhang, and C.-Y.-D. Sim, "Multiband antennas for GSM/GPS/LTE/WLAN smart watch applications," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, 2017.        Google Scholar

38. Ahmad, S., A. Ghaffar, X. J. Li, and N. Cherif, "A millimetre-wave tri-band antenna embedded on smart watch for wearable applications," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.        Google Scholar

39. Jin, Y. and J. Choi, "Bandwidth enhanced compact dual-band smart watch antenna for WLAN 2.4/5.2 GHz application," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, China, 2017.        Google Scholar

40. Chen, C.-H., Y.-F. Lin, P.-W. Huang, H.-M. Chen, and C.-T. Liao, "Design of multi-band antenna for LTE wearable device with shared slots and radiators for smart watch," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 11, 1-14, 2020.        Google Scholar

41. Ahmad, S., H. Boubakar, S. Naseer, M. Ehsanul Alim, Y. Ali Sheikh, A. Ghaffar, A. J. A. Al-Gburi, and N. O. Parchin, "Design of a tri-band wearable antenna for millimeter-wave 5G applications," Sensors, Vol. 22, No. 20, 1-14, 2022.
doi:10.1109/JSEN.2022.3211123        Google Scholar

42. Foudazi, A., H. R. Hassani, and S. M. A. Nezhad, "Small UWB planar monopole antenna with added GPS/GSM/WLAN bands," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2987-2992, 2012.
doi:10.1109/TAP.2012.2194632        Google Scholar

43. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999        Google Scholar

44. Martens, R., E. Safin, and D. Manteuffel, "Inductive and capacitive excitation of the characteristic modes of small terminals," Proc. Loughborough Antennas Propag. Conf., 1-4, Nov. 2011.        Google Scholar

45. Li, W. T., X. W. Shi, and Y. Q. Hei, "Novel planar UWB monopole antenna with triple band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1094-1098, 2009.        Google Scholar

46. Painam, S. K. and C. M. Bhuma, "A compact hexa-band and UWB antenna using heptagon and nonagon rings with vertex feed," 2018 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-4, Hyderabad, India, 2018.        Google Scholar