Vol. 110
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-05-25
Frequency Diverse Arc Array Beampattern Synthesis Analysis with Nonlinear Frequency Offset
By
Progress In Electromagnetics Research Letters, Vol. 110, 109-116, 2023
Abstract
Frequency diversity array (FDA) can generate distance and angle dependent ``S'' beam patterns, but there is a problem of distance and angle coupling, which can be well solved by using nonlinear frequency offset in recent years' research. The rotational symmetry of the arc-shaped structure brings the beam scanning capability of the array antenna within a range of 360°, which can realize the all-round monitoring of the target position, and provides a more flexible method for radar communication. In this paper, a nonlinear frequency offset based frequency diversity arc array (FDAA) beam scanning method is proposed, which activates the selection matrix according to the target direction. In order to form equal phase plane beam scanning, phase compensation between array elements is carried out, and three kinds of nonlinear frequency bias are introduced to simulate beampattern synthesis. Compared with the traditional linear frequency offset FDAA, the numerical simulation results verify the feasibility and effectiveness of the scheme.
Citation
Zhuo Deng, Wei Xu, Pingping Huang, Weixian Tan, and Yaolong Qi, "Frequency Diverse Arc Array Beampattern Synthesis Analysis with Nonlinear Frequency Offset," Progress In Electromagnetics Research Letters, Vol. 110, 109-116, 2023.
doi:10.2528/PIERL23030201
References

1. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," 2006 IEEE Conference on Radar, IEEE, Verona, NY, USA, 2006.

2. Wang, W. Q., "Frequency diverse array antenna: New opportunities," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 145-152, 2015.
doi:10.1109/MAP.2015.2414692

3. Ivashina, M. V., R. Maaskant, and B.Woestenburg, "Equivalent system representation to model the beam sensitivity of receiving antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 733-737, 2008.
doi:10.1109/LAWP.2008.2006917

4. Wang, W. Q., "Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4073-4081, 2013.
doi:10.1109/TAP.2013.2260515

5. Wang, Y., W. Q. Wang, and H. Chen, "Linear frequency diverse array manifold geometry and ambiguity analysis," IEEE Sensors Journal, Vol. 15, No. 2, 984-993, 2015.
doi:10.1109/JSEN.2014.2359074

6. Liao, T., Y. Pan, and W. Q. Wang, "Generalized linear frequency diverse array manifold curve analysis," IEEE Signal Processing Letters, Vol. 25, No. 6, 768-772, 2018.
doi:10.1109/LSP.2018.2825288

7. Wang, Y. and S. Zhu, "Range ambiguous clutter suppression for FDA-MIMO forward looking airborne radar based on main lobe correction," IEEE Transactions on Vehicular Technology, Vol. 70, No. 3, 2032-2046, 2021.
doi:10.1109/TVT.2021.3057436

8. Gui, R., W. Q. Wang, A. Farina, and H. C. So, "FDA radar with doppler-spreading consideration: Mainlobe clutter suppression for blind-doppler target detection," Signal Processing, Vol. 179, 107773, 2021.
doi:10.1016/j.sigpro.2020.107773

9. Khan, W., I. M. Qureshi, A. Basit, A. N. Malik, and A. Umar, "Performance analysis of MIMO- frequency diverse array radar with variable logarithmic offsets," Progress In Electromagnetics Research C, Vol. 62, 23-34, 2016.

10. Nusenu, S. Y., H. Chen, W.-Q. Wang, S. Ji, and O. A. K. Opuni-Boachie, "Frequency diverse array using Butler matrix for secure wireless communications," Progress In Electromagnetics Research M, Vol. 63, 207-215, 2018.
doi:10.2528/PIERM17101305

11. Wang, W. Q., H. C. So, and H. Shao, "Nonuniform frequency diverse array for range-angle imaging of targets," IEEE Sensors Journal, Vol. 14, No. 8, 2469-2476, 2014.
doi:10.1109/JSEN.2014.2304720

12. Khan, W., I. M. Qureshi, and S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 499-502, 2015.
doi:10.1109/LAWP.2014.2368977

13. Gao, K., W. Q. Wang, J. Cai, and X. Jie, "Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets," IET Microwaves, Antennas & Propagation, Vol. 10, No. 8, 880-884, 2016.
doi:10.1049/iet-map.2015.0658

14. Shao, H., J. Dai, J. Xiong, H. Chen, and W. Q. Wang, "Dot-shaped range-angle beampattern synthesis for frequency diverse array," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1703-1706, 2016.
doi:10.1109/LAWP.2016.2527818

15. Chen, B., X. Chen, Y. Huang, and J. Guan, "Transmit beampattern synthesis for the FDA radar," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 98-101, 2018.
doi:10.1109/LAWP.2017.2776957

16. Basit, A., I. M. Qureshi, W. Khan, S. U. Rehman, and M. M. Khan, "Beam pattern synthesis for an FDA radar with hamming window-based nonuniform frequency offset," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2283-2286, 2017.
doi:10.1109/LAWP.2017.2714761

17. Liao, Y., W. Q. Wang, and Z. Zheng, "Frequency diverse array beampattern synthesis using symmetrical logarithmic frequency offsets for target indication," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3505-3509, 2019.
doi:10.1109/TAP.2019.2900353

18. Zubair, M., S. Ahmed, and M. S. Alouini, "Frequency diverse array radar: New results and discrete fourier transform based beampattern," IEEE Transactions on Signal Processing, Vol. 68, 2670-2681, 2020.
doi:10.1109/TSP.2020.2985587

19. Liao, Y., H. Tang, X. Chen, and W. Q. Wang, "Frequency diverse array beampattern synthesis with Taylor windowed frequency offsets," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 11, 1901-1905, 2020.
doi:10.1109/LAWP.2020.3024710

20. Wang, W. Q. and H. C. So, "Transmit subaperturing for range and angle estimation in frequency diverse array radar," IEEE Transactions on Signal Processing, Vol. 62, No. 8, 2000-2011, 2014.
doi:10.1109/TSP.2014.2305638

21. Nusenu, S. Y, A. Basit, and E. Asare, "FDA transmit beamforming synthesis using Chebyshev window function technique to counteract deceptive electronic countermeasures signals," Progress In Electromagnetics Research Letters, Vol. 90, 53-60, 2020.
doi:10.2528/PIERL19121005

22. Wang, Z., T. Mu, Y. Song, and Z. Ahmad, "Beamforming of frequency diverse array radar with nonlinear frequency offset based on logistic map," Progress In Electromagnetics Research M, Vol. 64, 55-63, 2018.
doi:10.2528/PIERM17103101

23. Xu, W., J. Hu, P. Huang, W. Tan, and Y. Dong, "Multiaperture antenna architecture design for azimuth uniform sampling in high-resolution wide-swath SAR," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 6, 1042-1046, 2020.
doi:10.1109/LAWP.2020.2988819

24. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

25. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C,, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

26. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

27. Lin, Y., W. Hong, W. Tan, Y. Wang, and M. Xiang, "Airborne circular SAR imaging: Results at P-band," 2012 IEEE International Geoscience and Remote Sensing Symposium, 5594-5597, 2012.
doi:10.1109/IGARSS.2012.6352051

28. Huang, P., W. Tan, and Y. Su, "MIMO-SAR imaging technology for helicopter-borne based on ARC antenna array," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1801-1804, 2015.

29. Akkoc, A., E. Afacan, and E. Yazgan, "Dot-shaped 3D range-angle dependent beamforming with discular frequency diverse array," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6500-6508, 2021.
doi:10.1109/TAP.2021.3070128