1. Rappaport, T. S., Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks --- With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, 2017.
doi:10.1109/TAP.2017.2734243 Google Scholar
2. Ancans, G., V. Bobrovs, A. Ancans, and D. Kalibatiene, "Spectrum considerations for 5G mobile communication systems," Procedia Computer Science, Vol. 104, 509-516, 2017.
doi:10.1016/j.procs.2017.01.166 Google Scholar
3. Teyeb, O., G. Wikstrom, M. Stattin, T. Cheng, S. Faxer, and H. Do, "Evolving LTE to fit the 5G future," Ericsson Technol. Rev., Vol. 95, No. 2, 8-22, 2017. Google Scholar
4. Dahlman, E., G. Mildh, S. Parkvall, J. Peisa, J. Sachs, and Y. Skold, "5G radio access," Ericsson Rev., Vol. 6, No. 1, 1-12, Jun. 2014. Google Scholar
5. Young, L. J., "Telecom experts plot a path to 5G [news]," IEEE Spectr., Vol. 52, No. 10, 14-15, Oct. 2015.
doi:10.1109/MSPEC.2015.7274179 Google Scholar
6. Ayyappan, M. and P. Patel, "On design of a triple elliptical super wideband antenna for 5G applications," IEEE Access, Vol. 10, 76031-76043, 2022.
doi:10.1109/ACCESS.2022.3185241 Google Scholar
7. Dey, S., M. S. Arefin, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082 Google Scholar
8. Balani, W., M. Sarvagya, T. Ali, P. M. M. Manohara, J. Anguera, A. Andujar, and S. Das, "Design techniques of super-wideband antennas-existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
doi:10.1109/ACCESS.2019.2943655 Google Scholar
9. Azim, R., M. T. Islam, H. Arshad, M. M. Alam, N. Sobahi, and A. I. Khan, "CPW-fed super-wideband antenna with modified vertical bow-tie-shaped patch for wireless sensor networks," IEEE Access, Vol. 9, 5343-5353, 2020. Google Scholar
10. Karimyian-Mohammadabadi, M., M. A. Dorostkar, F. Shokuohi, M. Shanbeh, and A. Torkan, "Super-wideband textile fractal antenna for wireless body area networks," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 13, 1728-1740, 2015.
doi:10.1080/09205071.2015.1060139 Google Scholar
11. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154 Google Scholar
12. Garg, R. K., S. Singhal, and R. S. Tomar, "A CPW fed Clown-shaped super wideband antenna," Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021.
doi:10.2528/PIERL21070502 Google Scholar
13. Singhal, S. and A. K. Singh, "Modified star-star fractal (MSSF) super-wideband antenna," Microwave and Optical Technology Letters, Vol. 59, No. 3, 624-630, 2017.
doi:10.1002/mop.30357 Google Scholar
14. Singhal, S. and A. K. Singh, "CPW-fed Phi-shaped monopole antenna for super-wideband applications," Progress In Electromagnetics Research C, Vol. 64, 105-116, 2016.
doi:10.2528/PIERC16022401 Google Scholar
15. Siahcheshm, A., J. Nourinia, Y. Zehforoosh, and B. Mohammadi, "A compact modified triangular CPW-fed antenna with multioctave bandwidth," Microwave and Optical Technology Letters, Vol. 57, No. 1, 69-72, 2015.
doi:10.1002/mop.28780 Google Scholar
16. Ajith, K. K. and A. Bhattacharya, "A novel compact superwideband bowtie antenna for 420 MHz to 5.5 GHz operation," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 3830-3836, 2018.
doi:10.1109/TAP.2018.2836382 Google Scholar
17. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117 Google Scholar
18. Faouri, Y., S. Ahmad, S. Naseer, K. Alhammami, N. Awad, A. Ghaffar, and M. I. Hussein, "Compact super wideband frequency diversity hexagonal shaped monopole antenna with switchable rejection band," IEEE Access, Vol. 10, 42321-42333, 2022.
doi:10.1109/ACCESS.2022.3167387 Google Scholar
19. Agarwal, S., A. Sharma, I. J. Garcia Zuazola, and W. G. Whittow, "Three-dimensional miniaturized super wideband antenna with filtering capabilities," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 8, e23200, 2022.
doi:10.1002/mmce.23200 Google Scholar
20. Shahu, B. L., S. Pal, and N. Chattoraj, "Design of super wideband hexagonal-shaped fractal antenna with triangular slot," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1659-1662, 2015.
doi:10.1002/mop.29184 Google Scholar
21. Chandra Shekar, M., S. Arularasan, N. M. Nathani, G. U. Zaman, and C. G. Joshi, "Genetic architecture of three Turbinella pyrum varieties (Linnaeus, 1758) from the southeast coast of India," Marine Ecology, Vol. 37, No. 3, 588-598, 2016.
doi:10.1111/maec.12312 Google Scholar
22. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038 Google Scholar
23. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672, May 1996.
doi:10.1109/8.496253 Google Scholar
24. Dey, S. and N. C. Karmakar, "Design of novel super wide band antenna close to the fundamental dimension limit theory," Scientific Reports, Vol. 10, No. 1, 1-15, 2020.
doi:10.1038/s41598-019-56847-4 Google Scholar
25. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, 2005. Google Scholar
26. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
doi:10.1109/8.611252 Google Scholar
27. Reniers, A. C., A. R. van Dommele, A. B. Smolders, and M. H. Herben, "The influence of the probe connection on mm-wave antenna measurements," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3819-3825, 2015.
doi:10.1109/TAP.2015.2452941 Google Scholar
28. Ji, Z., G.-H. Sun, and H. Wong, "A wideband circularly polarized complementary antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2392-2400, 2022.
doi:10.1109/TAP.2021.3083782 Google Scholar
29. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, 2021.
doi:10.3390/s21020477 Google Scholar
30. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single band suppression," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 143-150, 2017.
doi:10.1017/S1759078715000963 Google Scholar
31. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094 Google Scholar
32. Kumar, A. L., A. Ranjan, M. Chauhan, V. K. Killamsetty, and B. Mukherjee, "Circular SRR shaped UWB antenna with WiMAX band notch characteristics," 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, IEEE, 2018. Google Scholar
33. Gupta, S., M. Chauhan, and B. Mukherjee, "Fractal on hemispherical DRA by Descarte's circle theorem for wideband application," 2018 Conference on Information and Communication Technology (CICT), 1-6, IEEE, 2018. Google Scholar