Vol. 132
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-24
A Novel Low Profile Turbinella Shaped Antenna for 5G Millimeter Wave Applications
By
Progress In Electromagnetics Research C, Vol. 132, 129-144, 2023
Abstract
This article investigates a Turbinella-shaped super wideband monopole antenna designed to accommodate the attributes of the fifth-generation (5G) technology which is the enhanced Mobile Broadband (eMBB). The antenna is designed to work with the current millimetre wave bands, including n77, n78, and n258, and it provides the increased data rate needed for eMBB applications. The proposed antenna comprises a Turbinella-shaped patch, a 50 Ω tapered feed line, and a multi-slotted partial ground plane. The self-similarity and space-filling nature of circular geometrical fractal is employed in a novel way to acquire the antenna compactness and broadband performances. Further with the design of a tuning fork-shaped Defective Ground Structure (DGS), super wideband characteristics to incorporate 5G millimeter bands are obtained. The proposed antenna has a compact size of 0.25λ × 0.32λ along with a bandwidth of 173.33% along the frequency ranging from 3 to 41.97 GHz and has achieved a compactness of 81%. Moreover, the fundamental dimension limit theorem is used to demonstrate the antenna's compactness. Time domain analysis is also studied in this article.
Citation
Madhusudhanan Nair Ayyappan, Abhijeet Gaonkar, and Pragati Patel, "A Novel Low Profile Turbinella Shaped Antenna for 5G Millimeter Wave Applications," Progress In Electromagnetics Research C, Vol. 132, 129-144, 2023.
doi:10.2528/PIERC23030806
References

1. Rappaport, T. S., Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks --- With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, 2017.
doi:10.1109/TAP.2017.2734243        Google Scholar

2. Ancans, G., V. Bobrovs, A. Ancans, and D. Kalibatiene, "Spectrum considerations for 5G mobile communication systems," Procedia Computer Science, Vol. 104, 509-516, 2017.
doi:10.1016/j.procs.2017.01.166        Google Scholar

3. Teyeb, O., G. Wikstrom, M. Stattin, T. Cheng, S. Faxer, and H. Do, "Evolving LTE to fit the 5G future," Ericsson Technol. Rev., Vol. 95, No. 2, 8-22, 2017.        Google Scholar

4. Dahlman, E., G. Mildh, S. Parkvall, J. Peisa, J. Sachs, and Y. Skold, "5G radio access," Ericsson Rev., Vol. 6, No. 1, 1-12, Jun. 2014.        Google Scholar

5. Young, L. J., "Telecom experts plot a path to 5G [news]," IEEE Spectr., Vol. 52, No. 10, 14-15, Oct. 2015.
doi:10.1109/MSPEC.2015.7274179        Google Scholar

6. Ayyappan, M. and P. Patel, "On design of a triple elliptical super wideband antenna for 5G applications," IEEE Access, Vol. 10, 76031-76043, 2022.
doi:10.1109/ACCESS.2022.3185241        Google Scholar

7. Dey, S., M. S. Arefin, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
doi:10.1109/ACCESS.2021.3068082        Google Scholar

8. Balani, W., M. Sarvagya, T. Ali, P. M. M. Manohara, J. Anguera, A. Andujar, and S. Das, "Design techniques of super-wideband antennas-existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
doi:10.1109/ACCESS.2019.2943655        Google Scholar

9. Azim, R., M. T. Islam, H. Arshad, M. M. Alam, N. Sobahi, and A. I. Khan, "CPW-fed super-wideband antenna with modified vertical bow-tie-shaped patch for wireless sensor networks," IEEE Access, Vol. 9, 5343-5353, 2020.        Google Scholar

10. Karimyian-Mohammadabadi, M., M. A. Dorostkar, F. Shokuohi, M. Shanbeh, and A. Torkan, "Super-wideband textile fractal antenna for wireless body area networks," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 13, 1728-1740, 2015.
doi:10.1080/09205071.2015.1060139        Google Scholar

11. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154        Google Scholar

12. Garg, R. K., S. Singhal, and R. S. Tomar, "A CPW fed Clown-shaped super wideband antenna," Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021.
doi:10.2528/PIERL21070502        Google Scholar

13. Singhal, S. and A. K. Singh, "Modified star-star fractal (MSSF) super-wideband antenna," Microwave and Optical Technology Letters, Vol. 59, No. 3, 624-630, 2017.
doi:10.1002/mop.30357        Google Scholar

14. Singhal, S. and A. K. Singh, "CPW-fed Phi-shaped monopole antenna for super-wideband applications," Progress In Electromagnetics Research C, Vol. 64, 105-116, 2016.
doi:10.2528/PIERC16022401        Google Scholar

15. Siahcheshm, A., J. Nourinia, Y. Zehforoosh, and B. Mohammadi, "A compact modified triangular CPW-fed antenna with multioctave bandwidth," Microwave and Optical Technology Letters, Vol. 57, No. 1, 69-72, 2015.
doi:10.1002/mop.28780        Google Scholar

16. Ajith, K. K. and A. Bhattacharya, "A novel compact superwideband bowtie antenna for 420 MHz to 5.5 GHz operation," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 3830-3836, 2018.
doi:10.1109/TAP.2018.2836382        Google Scholar

17. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117        Google Scholar

18. Faouri, Y., S. Ahmad, S. Naseer, K. Alhammami, N. Awad, A. Ghaffar, and M. I. Hussein, "Compact super wideband frequency diversity hexagonal shaped monopole antenna with switchable rejection band," IEEE Access, Vol. 10, 42321-42333, 2022.
doi:10.1109/ACCESS.2022.3167387        Google Scholar

19. Agarwal, S., A. Sharma, I. J. Garcia Zuazola, and W. G. Whittow, "Three-dimensional miniaturized super wideband antenna with filtering capabilities," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 8, e23200, 2022.
doi:10.1002/mmce.23200        Google Scholar

20. Shahu, B. L., S. Pal, and N. Chattoraj, "Design of super wideband hexagonal-shaped fractal antenna with triangular slot," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1659-1662, 2015.
doi:10.1002/mop.29184        Google Scholar

21. Chandra Shekar, M., S. Arularasan, N. M. Nathani, G. U. Zaman, and C. G. Joshi, "Genetic architecture of three Turbinella pyrum varieties (Linnaeus, 1758) from the southeast coast of India," Marine Ecology, Vol. 37, No. 3, 588-598, 2016.
doi:10.1111/maec.12312        Google Scholar

22. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038        Google Scholar

23. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672, May 1996.
doi:10.1109/8.496253        Google Scholar

24. Dey, S. and N. C. Karmakar, "Design of novel super wide band antenna close to the fundamental dimension limit theory," Scientific Reports, Vol. 10, No. 1, 1-15, 2020.
doi:10.1038/s41598-019-56847-4        Google Scholar

25. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, 2005.        Google Scholar

26. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
doi:10.1109/8.611252        Google Scholar

27. Reniers, A. C., A. R. van Dommele, A. B. Smolders, and M. H. Herben, "The influence of the probe connection on mm-wave antenna measurements," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3819-3825, 2015.
doi:10.1109/TAP.2015.2452941        Google Scholar

28. Ji, Z., G.-H. Sun, and H. Wong, "A wideband circularly polarized complementary antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2392-2400, 2022.
doi:10.1109/TAP.2021.3083782        Google Scholar

29. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, 2021.
doi:10.3390/s21020477        Google Scholar

30. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single band suppression," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 143-150, 2017.
doi:10.1017/S1759078715000963        Google Scholar

31. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094        Google Scholar

32. Kumar, A. L., A. Ranjan, M. Chauhan, V. K. Killamsetty, and B. Mukherjee, "Circular SRR shaped UWB antenna with WiMAX band notch characteristics," 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, IEEE, 2018.        Google Scholar

33. Gupta, S., M. Chauhan, and B. Mukherjee, "Fractal on hemispherical DRA by Descarte's circle theorem for wideband application," 2018 Conference on Information and Communication Technology (CICT), 1-6, IEEE, 2018.        Google Scholar