Vol. 133
Latest Volume
All Volumes
2023-05-27
Improving Mutual Coupling in MIMO Antennas Using Different Techniques
By
Progress In Electromagnetics Research C, Vol. 133, 81-95, 2023
Abstract
Two different MIMO antennas configurations are proposed in this paper for operation around 30 GHz with a bandwidth of 0.8 GHz. The proposed configurations are applicable in 5G, 6G and radar systems in Ka-band systems. Each of the proposed configurations consists of four identical rectangular elements where each element is connected to an impedance transformer for impedance mismatch improvement. Due to the close existence of antenna elements, mutual coupling can seriously degrade the gain, signal to noise ratio, matching characteristics, and efficiency of the MIMO antenna systems. To overcome performance degradation, several techniques such as Curved Edges (CE), Defected Ground Structure (DGS), and Band Gap Structure (BGS) are implemented. Simulation was carried out using the commercial Computer Simulation Technology (CST) and High Frequency Structure Simulation Software (HFSS). Prototypes are fabricated and measured. The experimental results show good agreement with the simulated ones. Improvement in the mutual coupling value from -21.4 dB to -27.2 dB also proves the practicality of this design.
Citation
Mostafa A. Nassar, Heba Y. M. Soliman, Rania Mohamed Abdallah, and Esmat A. F. Abdallah, "Improving Mutual Coupling in MIMO Antennas Using Different Techniques," Progress In Electromagnetics Research C, Vol. 133, 81-95, 2023.
doi:10.2528/PIERC23033106
References

1. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993

3. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011.
doi:10.1109/JPROC.2011.2143650

4. Wang, C.-X., F. Haider, X. Gao, et al. "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, Feb. 2014.
doi:10.1109/MCOM.2014.6736752

5. Wei, L., R. Q. Hu, Y. Qian, and G. Wu, "Key elements to enable millimeter wave communications for 5G wireless systems," IEEE Wireless Communications, Vol. 21, No. 6, 136-143, Dec. 2014.
doi:10.1109/MWC.2014.7000981

6. Li, Q., G. Li, W. Lee, et al. "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Communications Magazine, Vol. 48, No. 5, 86-92, May 2010.
doi:10.1109/MCOM.2010.5458368

7. Qualcomm Technologies Inc., , Spectrum for 4G and 5G, Qualcomm Technologies Inc., Dec. 2017, [online]. Available: https://www.qualcomm.com/news/media-center. [Accessed Jan. 5, 2019].

8. Liu, D., W. Hong, T. S. Rappaport, et al. "What will 5G antennas and propagation be?," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6205-6212, 2017.
doi:10.1109/TAP.2017.2774707

9. Rappaport, T. S., Y. Xing, G. R. MacCartney, et al. "Overview of millimeter wave communications for fifth-generation (5G) wireless networks --- With a focus on propagation models," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6213-6230, 2017.
doi:10.1109/TAP.2017.2734243

10. Yang, S. and L. Hanzo, "Fifty years of MIMO detection: The road to large-scale MIMOs," IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, 1941-1988, 2015.
doi:10.1109/COMST.2015.2475242

11. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microwaves Antennas and Propagation, Vol. 11, No. 2, 271-279, 2017.
doi:10.1049/iet-map.2016.0738

12. Li, Y., C. Wang, H. Yuan, N. Liu, H. Zhao, and X. Li, "A 5G MIMO antenna manufactured by 3-D printing method," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 657-660, 2017.
doi:10.1109/LAWP.2016.2596297

13. Li, W.-A., Z.-H. Tu, and Q.-X. Chu, "Design of planar wideband MIMO antenna for mobile phones," 2015 IEEE International Wireless Symposium (IWS 2015), 1-4, Shenzhen, China, 2015.

14. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped antenna with defected ground structures for 5G wireless networks," 2016 Loughborough Antennas & Propagation Conference (LAPC), 1-3, Loughborough, UK, 2016.

15. Ou Yang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310

16. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

17. Hammoodi, A. I., A. Isaac, H. Raad, and M. Milanova, "Mutual coupling reduction between two closely spaced PIFAs," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1367-1368, Boston, MA, USA, 2018.

18. Lotfi Neyestanak, A. A., F. Jolani, and M. Dadgarpour, "Mutual coupling reduction between two microstrip patch antennas," 2008 Canadian Conference on Electrical and Computer Engineering, 739-742, Niagara Falls, ON, Canada, 2008.

19. Rusek, F., D. Persson, B. K. Lau, et al. "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, Vol. 30, No. 1, 40-60, Jan. 2013.
doi:10.1109/MSP.2011.2178495

20. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558

21. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 22 pages, Article ID 2018527, 2017.

22. Yang, F. and Y. Rahmat-Samii, "Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs," 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002, 528-531, Beijing, China, 2002.
doi:10.1109/ICMMT.2002.1187753

23. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 4160-4165, Jul. 2021.
doi:10.1109/TAP.2020.3044649

24. Allah, A., H. Ahmad, M. Sohail, W. Zaman, M. Ismail, and M. Rahman, "A novel high gain array approach MIMO antenna operating at 28 GHz for 5G mmWave applications," 2021 1st International Conference on Microwave, Antennas & Circuits (ICMAC), 1-4, 2021.

25. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, No. 4, 149-172, Nov. 1987.
doi:10.1109/T-VT.1987.24115