1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492
2. Nikolova, N. K., Introduction to Microwave Imaging, Cambridge University Press, 2017.
doi:10.1017/9781316084267
3. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
4. Chew, W. C. and Y.-M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
5. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2009.
doi:10.1109/TGRS.2009.2025122 Google Scholar
6. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099 Google Scholar
7. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Optics Express, Vol. 26, No. 11, 14678-14688, 2018.
doi:10.1364/OE.26.014678 Google Scholar
8. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221 Google Scholar
9. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, T. J. Cui, and , "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1818-1825, 2018. Google Scholar
10. Yao, H. M., E. Wei, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578 Google Scholar
11. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Transactions on Computational Imaging, Vol. 6, 46-56, 2019. Google Scholar
12. Anjit, T., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304 Google Scholar
13. Yin, W., J. Ge, P. Meng, and F. Qu, "A neural network method for the inverse scattering problem of impenetrable cavities," Electronic Research Archive, Vol. 28, No. 2, 1123-1142, 2020.
doi:10.3934/era.2020062 Google Scholar
14. Meng, P., X. Wang, and W. Yin, "A dynamical system view on recurrent neural networks," Electronic Research Archive, Vol. 30, No. 1, 257-271, 2022.
doi:10.3934/era.2022014 Google Scholar
15. Chen, B., Y. Guo, F. Ma, and Y. Sun, "Numerical schemes to reconstruct three-dimensional time- dependent point sources of acoustic waves," Inverse Problems, Vol. 36, No. 7, 075009, 1-21, 2020. Google Scholar
16. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015. Google Scholar
17. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117, 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
18. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338 Google Scholar
19. Peterson, M. R. and S. L. Ray, Computational Methods for Electromagnetics, Wiley-IEEE Press, 1998.
20. Wang, W. and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1292-1296, 1992.
doi:10.1109/8.202706 Google Scholar
21. Li, D., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, No. 6, 141-142, 2012.
doi:10.1109/MSP.2012.2211477 Google Scholar
22. Magdum, A., M. Erramshetty, and R. P. K. Jagannath, "An exponential filtering based inversion method for microwave imaging," Radioengineering, Vol. 30, No. 3, 496-503, 2021.
doi:10.13164/re.2021.0496 Google Scholar
23. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
doi:10.1109/TIP.2003.819861 Google Scholar
24. Vargas, J. O., A. C. Batista, L. S. Batista, and R. Adriano, "On the computational complexity of the conjugate-gradient method for solving inverse scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 17, 2323-2334, 2021.
doi:10.1080/09205071.2021.1946862 Google Scholar
25. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050 Google Scholar
26. Wei, Z., D. Liu, and X. Chen, "Dominant-current deep learning scheme for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2546-2555, 2019.
doi:10.1109/TBME.2019.2891676 Google Scholar
27. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/TAP.2019.2922779 Google Scholar
28. Kandel, I. and M. Castelli, "The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset," ICT Express, Vol. 6, No. 4, 312-315, 2020.
doi:10.1016/j.icte.2020.04.010 Google Scholar
29. Ye, X., Y. Bai, R. Song, K. Xu, and J. An, "An inhomogeneous background imaging method based on generative adversarial network," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4684-4693, 2020.
doi:10.1109/TMTT.2020.3015495 Google Scholar
30. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and Rytov approximations: A nonlinear approach to electromagnetic scattering," Journal of Geophysical Research: Solid Earth, Vol. 98, No. B2, 1759-1775, 1993.
doi:10.1029/92JB02324 Google Scholar
31. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, 2019.
32. Chew, W. C. and Q.-H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 878-884, 1994.
doi:10.1109/36.298015 Google Scholar
33. He, K. and J. Sun, "Convolutional neural networks at constrained time cost," IEEE Conference on Computer Vision and Pattern Recognition, 5353-5360, 2015. Google Scholar
34. Zhang, L., K. Xu, R. Song, X. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," Electronic Research Archive, Vol. 28, No. 24, 15007-15013, 2020. Google Scholar