Vol. 101
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-07-28
High-Isolation and Side Lobe Level Reduction for Dual-Band Series-Fed Centre-Fed X/Ku Shared Aperture Binomial Array Antenna for Airborne Synthetic Aperture Radar Applications
By
Progress In Electromagnetics Research B, Vol. 101, 175-191, 2023
Abstract
This research paper introduces a novel dual-band single-polarized (DBSP) series-fed center-fed open stub (SFCFOS) Binomial Antenna Array synthesis technique to improve side lobe levels (SLL) and better isolation for the use in Airborne Synthetic Aperture Radars (AIR-SARs). The antenna utilizes a shared-aperture array (SAA) architecture, operating in both X and Ku-bands with center frequencies of 9.3 and 13.265 GHz with a frequency ratio of 1:1.426. The SAA consists of a 7-element linear array of square microstrip patches for the X/Ku-band. The inter-element spacing between patches is set at 0.7λ to meet the ±25˚ scan range requirements. The X-band (9.3 GHz) frequency is ideal for soil moisture estimation in agricultural areas, while the Ku-band (13.265 GHz) is suitable for applications in snow-covered regions, cold areas, and disaster monitoring. To validate the antenna design, a prototype is fabricated and tested for S-parameters, radiation characteristics, and gain measurements. The size of the shared-aperture antenna is 200 mm × 50 mm × 0.787 mm. The measured results of the prototype align well with the simulated ones, exhibiting excellent radiation performance and high isolation. The bandwidth of 1.07% (X-band) and 1.5% (Ku-Band) and return loss of 25 dB/-15.7 dB at 9.3/13.265 GHz are achieved. The measured isolation is -45 dB which provides a large signal separation at X/Ku-bands. The antenna design shows a side-lobe level (SLL) of -39.5 dB at E-Plane (φ=0˚) and -17.9 dB for H-plane (φ=90˚) for the X-band and -35 dB at φ=0˚-19 dB for H-plane (φ=90˚) for the Ku-band. Additionally, it achieves high gain values of 12.8 dBi for the X-band and 13.2 dBi for the Ku-band. This research presents the first reported shared-aperture X/Ku-band single polarized planar array with binomial amplitude distribution synthesis technique, which holds significant value for AIR-SAR applications. All the measured results were in line with simulated ones and matched reasonably well.
Citation
Praveena Kati, and Venkata Kishore Kothapudi, "High-Isolation and Side Lobe Level Reduction for Dual-Band Series-Fed Centre-Fed X/Ku Shared Aperture Binomial Array Antenna for Airborne Synthetic Aperture Radar Applications," Progress In Electromagnetics Research B, Vol. 101, 175-191, 2023.
doi:10.2528/PIERB23041204
References

1. Moreira, L., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. Pa-Athanasiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine (GRSM), Vol. 1, 6-43, Mar. 2013.
doi:10.1109/MGRS.2013.2248301

2. Skolnik, M. I., Radar Handbook, 3rd Edition, 1.1{24.1, McGraw-Hill, New York, 1970.

3. Drinkwater, M. R., R. Kwok, and E. Rignot, "Synthetic aperture radar polarimetry of sea ice," Digest | International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 2, 1525-1528, 1990.
doi:10.1109/TGRS.1986.289673

4. Lynne, G. J. and G. R. Taylor, "Geological assessment of SIRB imagery of the Amadeus basin, N.T., Australia," IEEE Trans. Geosci. Remote Sens., Vol. 24, No. 4, 575-581, 1986.

5. Hovland, H. A., J. A. Johannessen, and G. Digranes, "Slick detection in SAR images," International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 4, 2038-2040, 1994.

6. Walker, B., G. Sander, M. Thompson, B. Burns, R. Fellerhoff, and D. Dubbert, "High-resolution, four-band SAR testbed with real-time image formation," International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 3, 1881-1885, 1996.
doi:10.1163/156939306779292192

7. Storvold, R., E. Malnes, Y. Larsen, K. A. Hogda, S. E. Hamran, K.Muller, and K. A. Langley, "SAR remote sensing of snow parameters in Norwegian areas --- Current status and future perspective," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1751-1759, 2006.
doi:10.2528/PIER90010100

8. Kong, J. A., S. H. Yueh, H. H. Lim, R. T. Shin, and J. J. van Zyl, "Classification of earth terrain using polarimetric synthetic aperture radar images," Progress In Electromagnetic Research, Vol. 3, 327-370, 1990.
doi:10.1109/36.406669

9. Jordan, R. L., B. L. Huneycutt, and M. Werner, "The SIR-C/X-SAR synthetic aperture radar system," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 4, 829-839, 1995.

10. Axness, T. A., R. V. Coffman, B. A. Kopp, and K. W. O'Haver, "Shared aperture technology development," Johns Hopkins APL Tech. Dig., Vol. 17, No. 3, 285-293, 1996.

11. Balanis, C. A., Antenna Theory: Analysis and Design. Antennas & Propagation, 4th Edition, Wiley, Hoboken, 1997.
doi:10.1109/TAP.2012.2207034

12. Zhong, S.-S., Z. Sun, L.-B. Kong, C. Gao, W. Wang, and M.-P. Jin, "Tri-band dual polarization shared-aperture microstrip array for SAR applications," IEEE Transactions on Antennas and Propagation, Vol. 60, 4157-4165, Sep. 2012.
doi:10.1109/LAWP.2021.3102104

13. Zhou, C., S. Yuan, H. Li, B. Wang, and H. Wong, "Dual-band shared-aperture antenna with bifunctional metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 2013-2017, 2021.
doi:10.1109/APS/URSI47566.2021.9704250

14. Liu, Y., Y. J. Cheng, and Y. Fan, "A dual-layer Ku/Ka dual-band shared-aperture re ectarray antenna based on structure-reuse technique," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1925-1926, 2021.
doi:10.1109/TAP.2020.2970096

15. Bai, C. X., Y. J. Cheng, Y. R. Ding, and J. F. Zhang, "A metamaterial-based S/X-band shared-aperture phased-array antenna with wide beam scanning coverage," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4283-4292, 2020.

16. Liu, L. Y., Y. J. Cheng, and L. Wang, "Dual-polarized Ku-band and single-polarized Ka-band shared-aperture phased array antenna," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, May 2021.
doi:10.1109/TAP.2022.3146867

17. Ding, Y. R., Y. J. Cheng, J. X. Sun, L. Wang, and T. J. Li, "Dual-band shared-aperture two- dimensional phased array antenna with wide bandwidth of 25.0% and 11.4% at Ku- and Ka-band," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 9, 7468-7477, Sep. 2022.
doi:10.1109/TAP.2022.3161267

18. Niu, W., B. Sun, G. Zhou, and Z. Lan, "Dual-band aperture shared antenna array with decreased radiation pattern distortion," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 6048-6053, Jul. 2022.
doi:10.1109/TCSI.2022.3173688

19. Ou, J.-H., B. Xu, S. F. Bo, Y. Dong, S.-W. Dong, and J. Tang, "Highly-isolated RF power and information receiving system based on dual-band dual-circular-polarized shared-aperture antenna," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 69, No. 8, 3093-3101, Aug. 2022.
doi:10.1109/TAP.2023.3234162

20. Kim, B., M. Kim, D. Lee, J. Lee, Y. Youn, and W. Hong, "A shared-aperture cavity slot antenna-in- package concept featuring end- re and broadside radiation for enhanced beam coverage of mmwave mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1378-1390, Feb. 2023.
doi:10.1109/TAP.2023.3248445

21. Ran, J., Y. Wu, C. Jin, P. Zhang, and W. Wang, "Dual-band multipolarized aperture-shared antenna array for Ku-/Ka-band satellite communication," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, 3882-3893, May 2023.
doi:10.1109/TAP.2022.3222091

22. Hao, R. S., J. F. Zhang, S. C. Jin, D. G. Liu, T. J. Li, and Y. J. Cheng, "K-/Ka-band shared-aperture phased array with wide bandwidth and wide beam coverage for LEO satellite communication," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 672-680, Jan. 2023.
doi:10.1109/ACCESS.2019.2911965

23. Li, K., T. Dong, and Z. Xia, "A broadband shared-aperture L/S/X-band dual polarized antenna for SAR applications," IEEE Access, Vol. 7, 51417-51425, 2019.
doi:10.1109/TVT.2021.3072556

24. Yang, G.-W. and S. Zhang, "A dual-band shared-aperture antenna with wide-angle scanning capability for mobile system applications," IEEE Trans. Veh. Technol., Vol. 70, No. 5, 4088-4097, May 2021.
doi:10.1002/mmce.22720

25. Kothapudi, V. K. and V. Kumar, "A multi-layer S/X-band shared aperture antenna array for airborne synthetic aperture radar applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 8, e22720, 2021.
doi:10.26866/jees.2019.19.1.64

26. Kothapudi, V. K. and V. Kumar, "SFCFOS uniform and Chebyshev amplitude distribution linear array antenna for K-band applications," Journal of Electromagnetic Engineering and Science, Vol. 19, 64-70, Jan. 2019.

27. Kothapudi, V. K. and V. Kumar, "Hybrid-fed shared aperture antenna array for X/K-band airborne synthetic aperture radar applications," IET Microwaves, Antennas & Propagation, Vol. 15, Dec. 2020.
doi:10.1109/ACCESS.2018.2810233

28. Kothapudi, V. K. and V. Kumar, "A 6-port two-dimensional 3x3 series-fed planar array antenna for dual-polarized X-band airborne synthetic aperture radar applications," IEEE Access, Vol. 6, 12001-12007, Mar. 2018.
doi:10.26866/jees.2018.18.2.117

29. Kothapudi, V. K. and V. Kumar, "Compact 1x2 and 2x2 dual polarized series-fed antenna array for X-band airborne synthetic aperture radar applications," Journal of Electromagnetic Engineering and Science, Vol. 18, 117-128, Apr. 2018.
doi:10.1109/TAP.2019.2908108

30. Chopra, R. and G. Kumar, "Series-fed binomial microstrip arrays for extremely low sidelobe level," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 164275-164279, 2019.

31. Mishra, N. K. and S. Das, "Investigation of binomial and Chebyshev distributionon dielectric resonator antenna array," Processing, and Computing Technologies, 434-437, 2014.

32. Mathur, P., G. Kumar, P. K. Mishra, and Y. K. Verma, "Large gain linear series-fed microstrip antenna arrays at Ka and C bands," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1872-1873, Vancouver, BC, Canada, 2015.
doi:10.1109/TAP.2019.2922774

33. Chopra, R. and G. Kumar, "Series- and corner-fed planar microstrip antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5982-5990, 2019.
doi:10.1109/R10-HTC.2017.8288905

34. Baki, K. M., "Beamwidth reduction of the binomial array for 5G communications," 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 55-58, 2017.

35. Apostolov, P., B. Yurukov, and A. Stefanov, "Efficient three-element binomial array antenna," 2019 PhotonIcs & Electromagnetics Research Symposium --- Spring (PIERS --- Spring), 4127-4131, Rome, Italy, 2019.

36. Chopra, R., G. Kumar, and R. Lakhani, "Corner fed microstrip antenna array with reduced cross-polarization and sidelobe level," 2016 Asia-Paci c Microwave Conference (APMC), 1-4, 2016.

37., Computer simulation technology version (2018), Wellesley Hill MA. Available at: www.cst.com.

38., Rogers Corporation, available at: www.rogerscorp.com.