1. Zubair Akhter, A. B. N. and M. J. Akhtar, "Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects," Journal of Electromagnetic Waves and Applications, Vol. 30, 1183-1197, 2016.
doi:10.1080/09205071.2016.1186574 Google Scholar
2. Tan, W., P. Huang, Z. Huang, Y. Qi, and W. Wang, "Three-dimensional microwave imaging for concealed weapon detection using range stacking technique," International Journal of Antennas and Propagation, 2017. Google Scholar
3. Zheng, Z., J. Pan, Z. Ni, C. Shi, S. Ye, and G. Fang, "Human posture reconstruction for through-the-wall radar imaging using convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, 1-5, 2021. Google Scholar
4. Lombardi, F., M. Lualdi, F. Picetti, P. Bestagini, G. Janszen, and L. A. Di Landro, "Ballistic ground penetrating radar equipment for blast-exposed security applications," Remote Sensing, Vol. 12, 717, 2020.
doi:10.3390/rs12040717 Google Scholar
5. Chen, B., T. Jin, B. Lu, and Z. Zhou, "Building interior layout reconstruction from through-the-wall radar image using MST-based method," EURASIP Journal on Advances in Signal Processing, Vol. 31, 1-9, 2014. Google Scholar
6. Singh, A. P., S. Dwivedi, and P. K. Jain, "A novel application of artificial neural network for recognition of target behind the wall," Microwave and Optical Technology Letters, Vol. 62, 152-167, 2020.
doi:10.1002/mop.32020 Google Scholar
7. Singh, V., S. Bhattacharyya, and P. K. Jain, "Micro-Doppler classification of human movements using spectrogram spatial features and support vector machine," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, e22264, 2020. Google Scholar
8. Celik, A. R. and M. B. Kurt, "Development of an ultra-wideband, stable and high-directive monopole disc antenna for radar-based microwave imaging of breast cancer," Journal of Microwave Power and Electromagnetic Energy, Vol. 52, 75-93, 2018.
doi:10.1080/08327823.2018.1458692 Google Scholar
9. Cicchetti, R., V. Cicchetti, S. Costanzo, P. D'Atanasio, A. Fedeli, M. Pastorino, S. Pisa, E. Pittella, E. Piuzzi, C. Ponti, and A. Randazzo, "A microwave imaging system for the detection of targets hidden behind dielectric walls," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, IEEE, 2020. Google Scholar
10. Nkwari, P. K. M., S. Sinha, and H. C. Ferreira, "Through-the-wall radar imaging: A review," IETE Technical Review, Vol. 35, 631-639, 2018.
doi:10.1080/02564602.2017.1364146 Google Scholar
11. Narayanan, R. M., E. T. Gebhardt, and S. P. Broderick, "Through-wall single and multiple target imaging using MIMO radar," Electronics, Vol. 6, 70, 2017.
doi:10.3390/electronics6040070 Google Scholar
12. Ralston, T. S., G. L. Charvat, and J. E. Peabody, "Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system," 2010 IEEE International Symposium on Phased Array Systems and Technology, 551-558, IEEE, October 2010. Google Scholar
13. Boudamouz, B., P. Millot, and C. Pichot, "Through the wall radar imaging with MIMO beamforming processing," 2011 Microwaves, Radar and Remote Sensing Symposium, 251-254, IEEE, August 2011.
doi:10.1109/MRRS.2011.6053647 Google Scholar
14. Laviada, J., A. Arboleya, F. Lopez-Gayarre, and F. Las-Heras, "Broadband synthetic aperture scanning system for three-dimensional through-the-wall inspection," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 97-101, 2015.
doi:10.1109/LGRS.2015.2498952 Google Scholar
15. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176-179, 2008.
doi:10.1109/LGRS.2008.915742 Google Scholar
16. Zhang, W. and A. Hoorfar, "Three-dimensional synthetic aperture radar imaging through multilayered walls," IEEE Transactions on Antennas and Propagation, Vol. 62, 459-462, 2013.
doi:10.1109/TAP.2013.2287274 Google Scholar
17. Zhang, W. and A. Hoorfar, "Three-dimensional real-time through-the-wall radar imaging with diffraction tomographic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, 4155-4163, 2012.
doi:10.1109/TGRS.2012.2227059 Google Scholar
18. Yoon, Y. S. and M. G. Amin, "Compressed sensing technique for high-resolution radar imaging," Signal Processing, Sensor Fusion, and Target Recognition XVII, International Society for Optics and Photonics, Vol. 6968, 69681A, 2008.
doi:10.1117/12.777175 Google Scholar
19. Song, Y., T. Jin, Y. Dai, Y. Song, and X. Zhou, "Through-wall human pose reconstruction via UWB MIMO radar and 3D CNN," Remote Sens., Vol. 13, 241, 2021.
doi:10.3390/rs13020241 Google Scholar
20. Kilic, A., I. Babaoglu, A. Babalik, and A. Arslan, "Through-wall radar classification of human posture using convolutional neural networks," International Journal of Antennas and Propagation, 2019. Google Scholar
21. Zhu, C., E. A. Chan, Y. Wang, W. Peng, R. Guo, B. Zhang, C. Soci, and Y. Chong, "Image reconstruction through a multimode fiber with a simple neural network architecture," Scientific Reports, Vol. 11, 1-10, 2021.
doi:10.1038/s41598-020-79139-8 Google Scholar
22. Skolnik, M., Introduction to Radar System, 3rd Ed., McGraw-Hill, 2017.
23. Gaikwad, A. N., D. Singh, and M. J. Nigam, "Application of clutter reduction techniques for detection of metallic and low dielectric target behind the brick wall by stepped frequency continuous wave radar in ultra-wideband range," IET Radar, Sonar & Navigation, Vol. 5, 416-425, 2011.
doi:10.1049/iet-rsn.2010.0059 Google Scholar
24. Wang, G., M. G. Amin, and Y. Zhang, "New approach for target locations in the presence of wall ambiguities," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, 301-315, 2006.
doi:10.1109/TAES.2006.1603424 Google Scholar
25. Ahmad, F. and M. G. Amin, "A noncoherent approach to radar localization through unknown walls," 2006 IEEE Conference on Radar, 2006. Google Scholar
26. Kaushal, S., B. Kumar, and D. Singh, "An autofocusing method for imaging the targets for TWI radar systems with correction of thickness and dielectric constant of wall," International Journal of Microwave and Wireless Technologies, Vol. 11, 15-21, 2019.
doi:10.1017/S1759078718001356 Google Scholar
27. Protiva, P., J. Mrkvica, and J. Machac, "Estimation of wall parameters from time-delay-only through-wall radar measurements," IEEE Transactions on Antennas and Propagation, Vol. 59, 4268-4278, 2011.
doi:10.1109/TAP.2011.2164206 Google Scholar
28. Singh, A. P., S. Dwivedi, and P. K. Jain, "A novel technique for contrast target detection in through-the-wall radar images," Journal of Electromagnetic Engineering and Sciences, Vol. 22, No. 3, 202-209, 2022.
doi:10.26866/jees.2022.3.r.78 Google Scholar
29. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 4, 2108-2122, 2014.
doi:10.1109/TGRS.2014.2355211 Google Scholar
30. Sekar, K., V. Duraisamy, and A. M. Remimol, "An approach of image scaling using DWT and bicubic interpolation," 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), 2014. Google Scholar
31. Singh, A. P., S. Dwivedi, and P. K. Jain, "Development of optimal thresholding technique for shape and size detection for through the wall radar imaging system," Defence Science Journal, Vol. 69, 564, 2019.
doi:10.14429/dsj.69.14574 Google Scholar
32. Singh, D., N. K. Choudhary, K. C. Tiwari, and R. Prasad, "Shape recognition of shallow buried metallic objects at X-band using ANN and image analysis techniques," Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009.
doi:10.2528/PIERB09010301 Google Scholar
33. Gonzalez, R. C. and R. E. Woods, Digital Image Processing Using Matlab, 2nd Ed., Tata McGraw Hill, 2010.
34. Osowski, S., "Fourier and wavelet descriptors for shape recognition using neural networks --- A comparative study," Pattern Recognition, Vol. 35, 1949-1957, 2002.
doi:10.1016/S0031-3203(01)00153-4 Google Scholar
35. Haykin, S., Neural Network --- A Comprehensive Foundation, 2nd Ed., Pearson Education, 2005.
36. Alwosheel, A., S. van Cranenburgh, and C. G. Chorus, "Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis," Journal of Choice Modelling, Vol. 28, 167-182, 2018.
doi:10.1016/j.jocm.2018.07.002 Google Scholar