1. Berkhout, A. and A. F. Koenderink, "A simple transfer-matrix model for metasurface multilayer systems," Nanophotonics, Vol. 9, No. 12, 3985-4007, 2020.
doi:10.1515/nanoph-2020-0212 Google Scholar
2. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, Pergamon Press, New York, 1966.
3. Digani, J., P. W. Hon, and A. R. Davoyan, "Framework for expediting discovery of optimal solutions with blackbox algorithms in non-topology photonic inverse design," ACS Photonics, Vol. 9, No. 2, 432-442, 2022.
doi:10.1021/acsphotonics.1c01819 Google Scholar
4. Hale, N., I. Simonsen, C. Brune, and M. Kildemo, "Use of 4 x 4 transfer matrix method in the study of surface magnon polaritons via simulated attenuated total re ection measurements on the antiferromagnetic semiconductor mnf 2," Physical Review B, Vol. 105, No. 10, 104421, 2022.
doi:10.1103/PhysRevB.105.104421 Google Scholar
5. Ji, W., T. Cai, Z. Xi, and P. Urbach, "Highly efficient and broadband achromatic transmission metasurface to refract and focus in microwave region," Laser & Photonics Reviews, Vol. 16, No. 1, 2100333, 2022.
doi:10.1002/lpor.202100333 Google Scholar
6. Ko, D. Y. K. and J. Sambles, "Scattering matrix method for propagation of radiation in stratied media: Attenuated total reflection studies of liquid crystals," JOSA A, Vol. 5, No. 11, 1863-1866, 1988.
doi:10.1364/JOSAA.5.001863 Google Scholar
7. Kohlberger, C. and A. Stelzer, "Multi-modal scattering and propagation through several close periodic grids," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5758-5769, 2022.
doi:10.1109/TAP.2022.3161327 Google Scholar
8. Kristensson, G., S. Poulsen, and S. Rikte, "Propagators and scattering of electromagnetic waves in planar bianisotropic slabs --- An application to frequency selective structures," Progress In Electromagnetics Research, Vol. 48, 1-25, 2004.
doi:10.2528/PIER04031503 Google Scholar
9. Kristensson, G., Scattering of Electromagnetic Waves by Obstacles. Mario Boella Series on Electromagnetism in Information and Communication, SciTech Publishing, Edison, NJ, USA, 2016.
doi:10.1049/SBEW524E
10. Kumar, N. and J. Saraf, "Tunable reflectance characteristics of magnetized cold plasma based one-dimensional defective photonic crystal," Optik, Vol. 252, 168577, 2022.
doi:10.1016/j.ijleo.2022.168577 Google Scholar
11. Li, B. and Z. Shen, "Wideband 3d frequency selective rasorber," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6536-6541, 2014.
doi:10.1109/TAP.2014.2361892 Google Scholar
12. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," JOSA A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024 Google Scholar
13. Li, Z.-Y. and L.-L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Physical Review E, Vol. 67, No. 4, 046607, 2003.
doi:10.1103/PhysRevE.67.046607 Google Scholar
14. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, MA, 1994.
15. Luque-Raigon, J. M., J. Halme, H. Miguez, and G. Lozano, "Symmetry analysis of the numerical instabilities in the transfer matrix method," Journal of Optics, Vol. 15, No. 12, 125719, 2013.
doi:10.1088/2040-8978/15/12/125719 Google Scholar
16. Marigo, J.-J. and A. Maurel, "Second order homogenization of subwavelength stratied media including nite size effect," SIAM Journal on Applied Mathematics, Vol. 77, No. 2, 721-743, 2017.
doi:10.1137/16M1070542 Google Scholar
17. Menzel, C., J. Sperrhake, and T. Pertsch, "Efficient treatment of stacked metasurfaces for optimizing and enhancing the range of accessible optical functionalities," Physical Review A, Vol. 93, No. 6, 063832, 2016.
doi:10.1103/PhysRevA.93.063832 Google Scholar
18. Michalski, K. A., "Modal transmission line theory of plane wave excited layered media with multiple conductive anisotropic sheets at the interfaces," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 226, 19-28, 2019.
doi:10.1016/j.jqsrt.2019.01.010 Google Scholar
19. Ning, J. and E. L. Tan, "Hybrid matrix method for stable analysis of electromagnetic waves in stratied bianisotropic media," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 10, 653-655, 2008.
doi:10.1109/LMWC.2008.2003446 Google Scholar
20. Norgren, M., "Optimal design using stratied bianisotropic media: Application to anti-re ection coatings," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 7, 939-959, 1998.
doi:10.1163/156939398X01178 Google Scholar
21. Norgren, M., "Wave-splitting approaches to direct and inverse frequency-domain scattering of electromagnetic waves from stratied bianisotropic materials,", Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 1996.
doi:10.1163/156939398X01178 Google Scholar
22. Orfanidis, S., Electromagnetic Waves and Antennas, Sophocles J. Orfanidis, 2016.
23. Ourir, A., Y. Gao, A. Maurel, and J.-J. Marigo, "Homogenization of thin and thick metamaterials and applications," Metamaterials --- Devices and Applications, 149-165, 2017. Google Scholar
24. Pendry, J., "Photonic band structures," Journal of Modern Optics, Vol. 41, No. 2, 209-229, 1994.
doi:10.1080/09500349414550281 Google Scholar
25. Pozar, D. M., Microwave Engineering, John Wiley & Sons, New York, NY, 1998.
26. Ranjbar, A. and A. Grbic, "Analysis and synthesis of cascaded metasurfaces using wave matrices," Physical Review B, Vol. 95, No. 20, 205114, 2017.
doi:10.1103/PhysRevB.95.205114 Google Scholar
27. Redheffer, R., "On the relation of transmission-line theory on scattering and transfer," J. Math. Phys., Vol. 41, 1-41, 1962.
doi:10.1002/sapm19624111 Google Scholar
28. Riga, J. and R. Seviour, "Electromagnetic analogs of quantum mechanical tunneling," Journal of Applied Physics, Vol. 132, No. 20, 200901, 2022.
doi:10.1063/5.0118308 Google Scholar
29. Rikte, S., M. Andersson, and G. Kristensson, "Homogenization of woven materials," Arch. Elektron. Ubertragungstech, Vol. 53, No. 5, 261-271, 1999. Google Scholar
30. Rikte, S., G. Kristensson, and M. Andersson, "Propagation in bianisotropic media --- Reflection and transmission," IEE Proc. Microwaves Antennas and Propag., Vol. 148, No. 1, 29-36, 2001.
doi:10.1049/ip-map:20010215 Google Scholar
31. Rumpf, R. C., "Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
doi:10.2528/PIERB11083107 Google Scholar
32. Silveirinha, M. G. and C. A. Fernandes, "Homogenization of metamaterial surfaces and slabs: The crossed wire mesh canonical problem," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 59-69, 2005.
doi:10.1109/TAP.2004.840538 Google Scholar
33. Sjoberg, D., "Analysis of wave propagation in stratied structures using circuit analogs, with application to electromagnetic absorbers," Eur. J. Phys., Vol. 29, 721-734, 2008.
doi:10.1088/0143-0807/29/4/007 Google Scholar
34. Sjoberg, D., "Circuit analogs for wave propagation in stratied structures," Wave Propagation in Materials for Modern Applications, 489-508, A. Petrin (ed.), InTech, 2010. Google Scholar
35. Sperrhake, J., M. Decker, M. Falkner, S. Fasold, T. Kaiser, I. Staude, and T. Pertsch, "Analyzing the polarization response of a chiral metasurface stack by semi-analytic modeling," Optics Express, Vol. 27, No. 2, 1236-1248, 2019.
doi:10.1364/OE.27.001236 Google Scholar
36. Yang, H.-Y. D., "A spectral recursive transformation method for electromagnetic waves in generalized anisotropic layered media," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 520-526, 1997.
doi:10.1109/8.558667 Google Scholar
37. Yu, Y., G. Q. Luo, A. A. Omar, X. Liu, W. Yu, Z. C. Hao, and Z. Shen, "3d absorptive frequency selective re ection and transmission structures with dual absorption bands," IEEE Access, 72880-72888, 2018.
doi:10.1109/ACCESS.2018.2881744 Google Scholar
38. Zaky, Z. A., A. Panda, P. D. Pukhrambam, and A. H. Aly, "The impact of magnetized cold plasma and its various properties in sensing applications," Scientic Reports, Vol. 12, No. 1, 1-12, 2022.
doi:10.1038/s41598-021-99269-x Google Scholar