Vol. 101
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-07-09
Performance Improvement of Antenna Using Metasurface: an Overview
By
Progress In Electromagnetics Research B, Vol. 101, 63-84, 2023
Abstract
This paper presents an in-depth review of the performance improvement of antennas using metasurface. Metasurface is a periodic arrangement of perfect electric conductors (PECs) on a metal-backed dielectric substrate that do not exist in nature and are able to manipulate the behavior of electromagnetic (EM) waves incident on it. The manipulations of EM waves improve the performances in terms of impedance bandwidth, gain, size, specific absorption rate (SAR), radar-cross-section (RCS), and polarization conversions. Consequently, numerous recent works on metasurface-inspired antenna design and their theoretical perspectives on performance enhancements are discussed. By adopting the discussed theories, novel metasurfaces are developed and proposed that analyze impedance-bandwidth enhancement, gain enhancement and SAR reduction. For designing the metasurfaces, initially a conventional rectangular unit cell (CRUC) is theoretically developed using transmission line model at 2.45 GHz. Following that, the CRUC-based metasurface is incorporated with a monopole antenna, which enhanced the impedance-bandwidth from 140 MHz to 320 MHz and the gain from 2.5 dB to 7.4 dB. On the body, the presence of the metasurface retains all the performances as free space, with a reduced 1 g SAR of 0.034 and 10 g SAR of 0.024 W/Kg.
Citation
Naresh Chandra Naik, Nibash Kumar Sahu, Bijay Kumar Ekka, and Tapas Kumar Patra, "Performance Improvement of Antenna Using Metasurface: an Overview," Progress In Electromagnetics Research B, Vol. 101, 63-84, 2023.
doi:10.2528/PIERB23050503
References

1. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488        Google Scholar

2. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488        Google Scholar

3. Frezza, F., L. Pajewski, and G. Schettini, "Fractal two-dimensional electromagnetic bandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 220-227, 2004.
doi:10.1109/TMTT.2003.821273        Google Scholar

4. Wang, L., L. Han, and W. Guo, "Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light Sci. Appl., Vol. 11, 53, 2022.
doi:10.1038/s41377-022-00741-8        Google Scholar

5. Viti, L., A. Politano, K. Zhang, and M. S. Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," ESI for Nanoscale, Vol. 4, 22-24, 2018.        Google Scholar

6. Viti, L., J. Hu, D. Coquillat, et al. "Black phosphorus terahertz photodetectors," Adv. Materials, Vol. 27, 5567-5572, 2015.
doi:10.1002/adma.201502052        Google Scholar

7. Xu, H., C. Guo, J. Zhang, et al. "PtTe2-based type-II dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection," Nano Micro. Small, Vol. 15, 24-29, 2019.        Google Scholar

8. Tang, W., A. Politano, and W. Guo, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, Vol. 28, No. 31, 1801786, 2018.
doi:10.1002/adfm.201801786        Google Scholar

9. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 22-28, 2018.        Google Scholar

10. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Mater., Vol. 5, No. 3, 2017.
doi:10.1063/1.4979090        Google Scholar

11. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736        Google Scholar

12. Viti, L., D. Coquillat, and A. Politano, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901        Google Scholar

13. Rizza, C., D. Dutta, B. Ghosh, F. Alessandro, et al. "Extreme optical anisotropy in the type-II dirac semimetal NiTe2 for applications to nanophotonics," ACS Applied Nano Materials, Vol. 5, No. 12, 18531-18536, 2022.
doi:10.1021/acsanm.2c04340        Google Scholar

14. Walser, R. M., A. Valanju, and P. W. Wins, "New smart materials for adaptive microwave signature control," Proc. SPIE, Vol. 3, 128-139, 1993.
doi:10.1117/12.148466        Google Scholar

15. Diaz, R. E. and S. A. Clavijo, "Arti cial magnetic conductor," Encyclopedia of RF and Microwave Engineering, Chang K. C. ed., John Wiley & Sons, Inc., New York, 2005.        Google Scholar

16. Yanghyo, K., F. Yang, and A. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.        Google Scholar

17. Li, L., Z. Wu, K. Li, et al. "Frequency-reconfigurable quasi-sierpinski antenna integrating with dual-band high-impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4459-4467, 2014.
doi:10.1109/TAP.2014.2331992        Google Scholar

18. Sievenpiper, D. F., "High-impedance electromagnetic surfaces. PhD dissertation,", University of California, Los Angeles, 1999.        Google Scholar

19. Liu, T., X. Y. Cao, J. J. Ma, and X. Wen, "Enhanced bandwidth uniplanar compact electromagnetic bandgap structure with coplanar meander line inductance," Electronics Letters, Vol. 44, 260-261, 2008.
doi:10.1049/el:20083600        Google Scholar

20. Li, Y. Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.        Google Scholar

21. Dewan, R., M. K. A. Rahim, M. R. Hamid, et al. "Arti cial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, No. 6, 123-135, 2017.
doi:10.1002/mmce.21105        Google Scholar

22. Ashyap, A. Y. I., S. H. B. Dahlan, Z. Z. Abidin, et al. "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997        Google Scholar

23. Ashyap, A. Y. I., S. H. Dahlan, Z. Z. Abidin, et al. "Flexible antenna with HIS based on PDMS substrate for WBAN applications," IEEE International RF and Microwave Conference (RFM), Vol. 3, 69-72, Penang, Malaysia, 2018.        Google Scholar

24. Sahu, N. K. and S. K. Mishra, "Compact dual-band dual-polarized monopole antennas using via-free metasurfaces for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 7, 1358-1362, 2022.
doi:10.1109/LAWP.2022.3167849        Google Scholar

25. Sahu, N. K. and S. K. Mishra, "Polarization-converting metasurface inspired dual-band dual- circularly polarized monopole antennas for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 194-198, 2023.
doi:10.1109/LAWP.2022.3206913        Google Scholar

26. Sahu, N. K. and S. K. Mishra, "A compact low SAR and high gain circularly polarized AMC integrated monopole antenna for WBAN applications," Progress In Electromagnetics Research C, Vol. 113, 211-226, 2021.
doi:10.2528/PIERC21051702        Google Scholar

27. Sahu, N. K. and S. K. Mishra, "Anisotropic metasurface inspired circularly-polarized monopole antenna for OFF body communications," IEEE Wireless Antenna and Microwave Symposium (WAMS), Vol. 1, 1-4, Rourkela, India, 2022.        Google Scholar

28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001        Google Scholar

29. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low pro le wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559        Google Scholar

30. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135        Google Scholar

31. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575        Google Scholar

32. Zhang, W., Y. Liu, and Y. Jia, "Circularly polarized antenna array with low RCS using metasurface-inspired antenna units," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1453-1457, 2019.
doi:10.1109/LAWP.2019.2919716        Google Scholar

33. Alshrafi, W., V. Ekaterinichev, and D. Heberling, "Wideband crossed dipoles antenna for all GNSS bands using wideband AMC," Proc. 12th Eur. Conf. Antennas Propag., Vol. 2, 1-4, London, U.K., 2018.        Google Scholar

34. Zhu, H., Y. Qiu, and G. Wei, "A broadband dual-polarized antenna with low profile using nonuniform metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1134-1138, 2019.
doi:10.1109/LAWP.2019.2910994        Google Scholar

35. Sahu, N. K. and S. K. Mishra, "Cavity model analysis of dual polarized microstrip antennas for wireless body area network application," Int. J. Syst. Assur. Eng. Manag., 2022.        Google Scholar

36. Sahu, N. K. and S. K. Mishra, "Analysis of omnidirectional antenna systems using cavity model," IETE Journal of Research, 2021.        Google Scholar

37. Sahu, N. K. and A. K. Sharma, "The investigation on bandwidth enhancement of microstrip slot antennas," Proc. of the Int. Conf. on Wireless Communication, Signal Processing And Networking, WISPNET, Vol. 1, 953-956, 2016.        Google Scholar

38. Sahu, N. K. and A. K. Sharma, "The investigation of pattern and frequency recon gurable microstrip slot antenna using PIN diodes," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS),, St. Petersburg, Russia, 2017.        Google Scholar

39. Sahu, N. K. and A. K. Sharma, "A study on frequency reconfiguration of microstrip slot antenna using PIN diodes," Proc. of the Int. Conf. on Communication System, Computing and IT Application, CSCITA, 2017.        Google Scholar

40. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 483-490, 2015.
doi:10.1109/TAP.2014.2381238        Google Scholar

41. Zhou, X., J. Shi, D. Feng, and H. Zhai, "A low-profile dual-polarized MIMO antenna array with high isolation," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 1-3, Chengdu, China, 2018.        Google Scholar

42. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, 2018.
doi:10.1109/LAWP.2018.2832098        Google Scholar

43. Goudarzi, A., M. Movahhedi, M. M. Honari, H. Saghlatoon, R. Mirzavand, and P. Mousavi, "Wideband high-gain circularly polarized resonant cavity antenna with a thin complementary partially reflective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 532-537, 2021.
doi:10.1109/TAP.2020.3001443        Google Scholar

44. Feng, B., X. He, J.-C. Cheng, Q. Zeng, and C.-Y.-D. Sim, "A low-profile differentially fed dual-polarized antenna with high gain and isolation for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 90-99, 2020.
doi:10.1109/TAP.2019.2935091        Google Scholar

45. Nie, Z., H. Zhai, L. Liu, J. Li, D. Hu, and J. Shi, "A dual-polarized frequency-reconfigurable low-profile antenna with harmonic suppression for 5G application," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1228-1232, 2019.
doi:10.1109/LAWP.2019.2913170        Google Scholar

46. Yang, S., L. Liang, W. Wang, Z. Fang, and Y. Zheng, "Wideband gain enhancement of an AMC cavity-backed dual-polarized antenna," IEEE Transactions on Vehicular Technology, Vol. 70, No. 12, 12703-12712, 2021.
doi:10.1109/TVT.2021.3119643        Google Scholar

47. Wang, W., Y. Chen, S. Yang, X. Zheng, and Q. Cao, "Design of a broadband electromagnetic wave absorber using a metamaterial technology," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 15, 2080-2091, 2015.
doi:10.1080/09205071.2015.1006733        Google Scholar

48. Shi, S., et al. "Wideband planar phased array antenna based on arti cial magnetic conductor surface," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1909-1913, 2020.
doi:10.1109/TCSII.2019.2958984        Google Scholar

49. Lee, J.-N., K.-C. Lee, and P.-J. Song, "The design of a dual-polarized small base station antenna with high isolation having a metallic cube," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 791-795, 2015.
doi:10.1109/TAP.2014.2379939        Google Scholar

50. Ye, L. H., X. Y. Zhang, Y. Gao, and Q. Xue, "Wideband dual-polarized four-folded-dipole antenna array with stable radiation pattern for base-station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4428-4436, 2020.
doi:10.1109/TAP.2020.2969749        Google Scholar

51. Cui, Y., Y. Niu, Y. Qin, and R. Li, "A new high-isolation broadband flush-mountable dual-polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7342-7347, 2018.
doi:10.1109/TAP.2018.2867036        Google Scholar

52. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018        Google Scholar

53. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038        Google Scholar

54. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199        Google Scholar

55. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.
doi:10.1109/ACCESS.2022.3183800        Google Scholar

56. Zhu, S., H. Liu, and P. Wen, "A new method for achieving miniaturization and gain enhancement of vivaldi antenna array based on anisotropic metasurface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1952-1956, 2019.
doi:10.1109/TAP.2019.2891220        Google Scholar

57. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179        Google Scholar

58. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011.        Google Scholar

59. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, 2010.        Google Scholar

60. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011.        Google Scholar

61. Odabasi, H., F. L. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, No. 8, Art. No. 084903, 2013.        Google Scholar

62. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.        Google Scholar

63. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012.        Google Scholar

64. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013.        Google Scholar

65. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna forWiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.        Google Scholar

66. Zhu, K., C. Li, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 678-681, 2013.        Google Scholar

67. Atrash, M. E., O. F. Abdalgalil, I. S. Mamoud, M. A. Abdallaand, and S. R. Zahran, "Wearable high gain low SAR antenna loaded with backed all-textile EBG for WBAN applications," IET Microw. Antennas Propag., Vol. 14, No. 8, 791-799, 2020.        Google Scholar

68. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017.        Google Scholar

69. Alemaryeen, A. and S. Noghanian, "On-body low-profile textile antenna with artificial magnetic conductor," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018.        Google Scholar

70. Atrash, M. El, M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient II-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 648-657, 2021.        Google Scholar

71. Paracha, K. N., S. K. A. Rahim, P. J. Soh, et al. "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.        Google Scholar

72. Chuquitarco-Jimenez, C. A., E. Antonino-Daviu, and M. Ferrando-Bataller, "Dual-band antenna with AMC for wearable applications," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP), 1-4, 2021.        Google Scholar

73. Yin, B., M. Ye, Y. Yu, and J. Gu, "A dual-band, miniaturized, AMC-based wearable antenna for health monitoring applications," Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021.        Google Scholar

74. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017.        Google Scholar

75. Mersani, A., L. Osman, and J. M. Ribero, "Performance of dualband AMC antenna for wireless local area network applications," IET Microw., Antennas Propag., Vol. 12, No. 6, 872-878, 2018.        Google Scholar

76. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018.        Google Scholar

77. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, 2018.        Google Scholar

78. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, June 2018.        Google Scholar

79. Abirami, B. S. and E. F. Sundarsingh, "EBG-backed flexible printed Yagi-Uda antenna for on-body communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3762-3765, 2017.        Google Scholar

80. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009.        Google Scholar

81. Wang, W., S. Gong, X. Wang, Y. Guan, and W. Jiang, "Differential evolution algorithm and method of moments for the design of low-RCS antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 295-298, 2010.        Google Scholar

82. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992.        Google Scholar

83. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Adv. Opt. Mater., Vol. 6, No. 19, 1-23, 2018.        Google Scholar

84. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008.        Google Scholar

85. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017.        Google Scholar

86. Fan, Y., J.Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, 2019.        Google Scholar

87. Xi, Y., W. Jiang, K. Wei, T. Hong, T. Cheng, and S. Gong, "Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 656-660, 2022.        Google Scholar

88. Kang, X., J. Su, H. Zhang, Z. Li, and Y. L. Yang, "Ultra-wideband RCS reduction of microstrip antenna array by optimized multi-element metasurface," Electron. Lett., Vol. 53, 520-522, 2017.        Google Scholar

89. Zhang, C., X. Cao, J. Gao, et al. "Shared aperture metasurface for bi-functions: Radiation and low backward scattering performance," IEEE Access, Vol. 7, 56547-56555, 2019.        Google Scholar

90. Zhang, C., J. Gao, X. Cao, L. Xu, and J. Han, "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, 2018.        Google Scholar

91. Liao, W.-J., W.-Y. Zhang, Y.-C. Hou, S.-T. Chen, C. Y. Kuo, and M. Chou, "An FSS-integrated low-RCS radome design," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2076-2080, 2019.        Google Scholar

92. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017.        Google Scholar

93. Dong, G., "Ultra-broadband perfect cross polarization conversion metasurface," Opt. Commun., Vol. 365, No. 7, 108-112, 2015.        Google Scholar

94. Li, Y., "An ultra-wideband linear-to-circular polarization conversion metasurface," Chin. Phys. B, Vol. 29, No. 10, 1-13, 2020.        Google Scholar

95. Gao, X., X. Y. Yu, W. P. Cao, Y. N. Jiang, and X. H. Yu, "Ultra-wideband circular-polarization converter with micro-split jerusalemcross metasurfaces," Chin. Phys. B, Vol. 25, No. 12, 1-7, 2016.        Google Scholar

96. Karamirad, M., C. Ghobadi, and J. Nourinia, "Metasurfaces for wideband and efficient polarization rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1799-1804, 2021.        Google Scholar

97. Yang, X., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin triband reflective cross-polarization arti cial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020.        Google Scholar

98. Liu, Y., X. Dang, L. Li, and H. Yin, "Dual-wideband cross polarization conversion metasurface based on a symmetric split ring resonator," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), Xiamen, China, 2019.        Google Scholar

99. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based re ective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1459-1463, August 2018.        Google Scholar

100. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an arti cial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6206-6216, 2014.        Google Scholar

101. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4189-4199, 2022.        Google Scholar

102. Supreeyatitikul, N., T. Lertwiriyaprapa, and C. Phongcharoenpanich, "S-shaped metasurface- based wideband circularly polarized patch antenna for C-band applications," IEEE Access, Vol. 9, 23944-23955, 2021.        Google Scholar

103. Zheng, Q., C. Guo, and J. Ding, "Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 679-685, 2018.        Google Scholar

104. Liu, Y., Y.-X. Huang, Z.-W. Liu, S.-T. Cai, X.-M. Xiong, and J. Guo, "Design of a compact wideband CP metasurface antenna," Int. J. RF Microw. Comput.-Aided Eng., Vol. 30, No. 10, 2020.        Google Scholar