Department of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
HomepageDepartment of Electronics & Instrumentation Engineering
Odisha University of Technology and Research
India
Homepage1. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488 Google Scholar
2. Tariq, F., M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, "A speculative study on 6G," IEEE Wireless Communications, Vol. 27, No. 4, 118-125, 2020.
doi:10.1109/MWC.001.1900488 Google Scholar
3. Frezza, F., L. Pajewski, and G. Schettini, "Fractal two-dimensional electromagnetic bandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 1, 220-227, 2004.
doi:10.1109/TMTT.2003.821273 Google Scholar
4. Wang, L., L. Han, and W. Guo, "Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light Sci. Appl., Vol. 11, 53, 2022.
doi:10.1038/s41377-022-00741-8 Google Scholar
5. Viti, L., A. Politano, K. Zhang, and M. S. Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," ESI for Nanoscale, Vol. 4, 22-24, 2018. Google Scholar
6. Viti, L., J. Hu, D. Coquillat, et al. "Black phosphorus terahertz photodetectors," Adv. Materials, Vol. 27, 5567-5572, 2015.
doi:10.1002/adma.201502052 Google Scholar
7. Xu, H., C. Guo, J. Zhang, et al. "PtTe2-based type-II dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection," Nano Micro. Small, Vol. 15, 24-29, 2019. Google Scholar
8. Tang, W., A. Politano, and W. Guo, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, Vol. 28, No. 31, 1801786, 2018.
doi:10.1002/adfm.201801786 Google Scholar
9. Liu, C., L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 22-28, 2018. Google Scholar
10. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Mater., Vol. 5, No. 3, 2017.
doi:10.1063/1.4979090 Google Scholar
11. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736 Google Scholar
12. Viti, L., D. Coquillat, and A. Politano, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
13. Rizza, C., D. Dutta, B. Ghosh, F. Alessandro, et al. "Extreme optical anisotropy in the type-II dirac semimetal NiTe2 for applications to nanophotonics," ACS Applied Nano Materials, Vol. 5, No. 12, 18531-18536, 2022.
doi:10.1021/acsanm.2c04340 Google Scholar
14. Walser, R. M., A. Valanju, and P. W. Wins, "New smart materials for adaptive microwave signature control," Proc. SPIE, Vol. 3, 128-139, 1993.
doi:10.1117/12.148466 Google Scholar
15. Diaz, R. E. and S. A. Clavijo, "Articial magnetic conductor," Encyclopedia of RF and Microwave Engineering, Chang K. C. ed., John Wiley & Sons, Inc., New York, 2005. Google Scholar
16. Yanghyo, K., F. Yang, and A. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007. Google Scholar
17. Li, L., Z. Wu, K. Li, et al. "Frequency-reconfigurable quasi-sierpinski antenna integrating with dual-band high-impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4459-4467, 2014.
doi:10.1109/TAP.2014.2331992 Google Scholar
18. Sievenpiper, D. F., "High-impedance electromagnetic surfaces. PhD dissertation,", University of California, Los Angeles, 1999. Google Scholar
19. Liu, T., X. Y. Cao, J. J. Ma, and X. Wen, "Enhanced bandwidth uniplanar compact electromagnetic bandgap structure with coplanar meander line inductance," Electronics Letters, Vol. 44, 260-261, 2008.
doi:10.1049/el:20083600 Google Scholar
20. Li, Y. Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008. Google Scholar
21. Dewan, R., M. K. A. Rahim, M. R. Hamid, et al. "Articial magnetic conductor for various antenna applications: An overview," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, No. 6, 123-135, 2017.
doi:10.1002/mmce.21105 Google Scholar
22. Ashyap, A. Y. I., S. H. B. Dahlan, Z. Z. Abidin, et al. "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.
doi:10.1109/ACCESS.2020.2963997 Google Scholar
23. Ashyap, A. Y. I., S. H. Dahlan, Z. Z. Abidin, et al. "Flexible antenna with HIS based on PDMS substrate for WBAN applications," IEEE International RF and Microwave Conference (RFM), Vol. 3, 69-72, Penang, Malaysia, 2018. Google Scholar
24. Sahu, N. K. and S. K. Mishra, "Compact dual-band dual-polarized monopole antennas using via-free metasurfaces for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 7, 1358-1362, 2022.
doi:10.1109/LAWP.2022.3167849 Google Scholar
25. Sahu, N. K. and S. K. Mishra, "Polarization-converting metasurface inspired dual-band dual- circularly polarized monopole antennas for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 194-198, 2023.
doi:10.1109/LAWP.2022.3206913 Google Scholar
26. Sahu, N. K. and S. K. Mishra, "A compact low SAR and high gain circularly polarized AMC integrated monopole antenna for WBAN applications," Progress In Electromagnetics Research C, Vol. 113, 211-226, 2021.
doi:10.2528/PIERC21051702 Google Scholar
27. Sahu, N. K. and S. K. Mishra, "Anisotropic metasurface inspired circularly-polarized monopole antenna for OFF body communications," IEEE Wireless Antenna and Microwave Symposium (WAMS), Vol. 1, 1-4, Rourkela, India, 2022. Google Scholar
28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
29. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low prole wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559 Google Scholar
30. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135 Google Scholar
31. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575 Google Scholar
32. Zhang, W., Y. Liu, and Y. Jia, "Circularly polarized antenna array with low RCS using metasurface-inspired antenna units," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1453-1457, 2019.
doi:10.1109/LAWP.2019.2919716 Google Scholar
33. Alshrafi, W., V. Ekaterinichev, and D. Heberling, "Wideband crossed dipoles antenna for all GNSS bands using wideband AMC," Proc. 12th Eur. Conf. Antennas Propag., Vol. 2, 1-4, London, U.K., 2018. Google Scholar
34. Zhu, H., Y. Qiu, and G. Wei, "A broadband dual-polarized antenna with low profile using nonuniform metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1134-1138, 2019.
doi:10.1109/LAWP.2019.2910994 Google Scholar
35. Sahu, N. K. and S. K. Mishra, "Cavity model analysis of dual polarized microstrip antennas for wireless body area network application," Int. J. Syst. Assur. Eng. Manag., 2022. Google Scholar
36. Sahu, N. K. and S. K. Mishra, "Analysis of omnidirectional antenna systems using cavity model," IETE Journal of Research, 2021. Google Scholar
37. Sahu, N. K. and A. K. Sharma, "The investigation on bandwidth enhancement of microstrip slot antennas," Proc. of the Int. Conf. on Wireless Communication, Signal Processing And Networking, WISPNET, Vol. 1, 953-956, 2016. Google Scholar
38. Sahu, N. K. and A. K. Sharma, "The investigation of pattern and frequency recongurable microstrip slot antenna using PIN diodes," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS),, St. Petersburg, Russia, 2017. Google Scholar
39. Sahu, N. K. and A. K. Sharma, "A study on frequency reconfiguration of microstrip slot antenna using PIN diodes," Proc. of the Int. Conf. on Communication System, Computing and IT Application, CSCITA, 2017. Google Scholar
40. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 483-490, 2015.
doi:10.1109/TAP.2014.2381238 Google Scholar
41. Zhou, X., J. Shi, D. Feng, and H. Zhai, "A low-profile dual-polarized MIMO antenna array with high isolation," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 1-3, Chengdu, China, 2018. Google Scholar
42. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, 2018.
doi:10.1109/LAWP.2018.2832098 Google Scholar
43. Goudarzi, A., M. Movahhedi, M. M. Honari, H. Saghlatoon, R. Mirzavand, and P. Mousavi, "Wideband high-gain circularly polarized resonant cavity antenna with a thin complementary partially reflective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 532-537, 2021.
doi:10.1109/TAP.2020.3001443 Google Scholar
44. Feng, B., X. He, J.-C. Cheng, Q. Zeng, and C.-Y.-D. Sim, "A low-profile differentially fed dual-polarized antenna with high gain and isolation for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 90-99, 2020.
doi:10.1109/TAP.2019.2935091 Google Scholar
45. Nie, Z., H. Zhai, L. Liu, J. Li, D. Hu, and J. Shi, "A dual-polarized frequency-reconfigurable low-profile antenna with harmonic suppression for 5G application," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1228-1232, 2019.
doi:10.1109/LAWP.2019.2913170 Google Scholar
46. Yang, S., L. Liang, W. Wang, Z. Fang, and Y. Zheng, "Wideband gain enhancement of an AMC cavity-backed dual-polarized antenna," IEEE Transactions on Vehicular Technology, Vol. 70, No. 12, 12703-12712, 2021.
doi:10.1109/TVT.2021.3119643 Google Scholar
47. Wang, W., Y. Chen, S. Yang, X. Zheng, and Q. Cao, "Design of a broadband electromagnetic wave absorber using a metamaterial technology," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 15, 2080-2091, 2015.
doi:10.1080/09205071.2015.1006733 Google Scholar
48. Shi, S., et al. "Wideband planar phased array antenna based on articial magnetic conductor surface," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1909-1913, 2020.
doi:10.1109/TCSII.2019.2958984 Google Scholar
49. Lee, J.-N., K.-C. Lee, and P.-J. Song, "The design of a dual-polarized small base station antenna with high isolation having a metallic cube," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 791-795, 2015.
doi:10.1109/TAP.2014.2379939 Google Scholar
50. Ye, L. H., X. Y. Zhang, Y. Gao, and Q. Xue, "Wideband dual-polarized four-folded-dipole antenna array with stable radiation pattern for base-station applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4428-4436, 2020.
doi:10.1109/TAP.2020.2969749 Google Scholar
51. Cui, Y., Y. Niu, Y. Qin, and R. Li, "A new high-isolation broadband flush-mountable dual-polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7342-7347, 2018.
doi:10.1109/TAP.2018.2867036 Google Scholar
52. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018 Google Scholar
53. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038 Google Scholar
54. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
55. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.
doi:10.1109/ACCESS.2022.3183800 Google Scholar
56. Zhu, S., H. Liu, and P. Wen, "A new method for achieving miniaturization and gain enhancement of vivaldi antenna array based on anisotropic metasurface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1952-1956, 2019.
doi:10.1109/TAP.2019.2891220 Google Scholar
57. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179 Google Scholar
58. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011. Google Scholar
59. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, 2010. Google Scholar
60. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 963-966, 2011. Google Scholar
61. Odabasi, H., F. L. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, No. 8, Art. No. 084903, 2013. Google Scholar
62. Milias, C., R. B. Andersen, P. I. Lazaridis, et al. "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022. Google Scholar
63. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012. Google Scholar
64. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013. Google Scholar
65. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna forWiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009. Google Scholar
66. Zhu, K., C. Li, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 678-681, 2013. Google Scholar
67. Atrash, M. E., O. F. Abdalgalil, I. S. Mamoud, M. A. Abdallaand, and S. R. Zahran, "Wearable high gain low SAR antenna loaded with backed all-textile EBG for WBAN applications," IET Microw. Antennas Propag., Vol. 14, No. 8, 791-799, 2020. Google Scholar
68. Ashyap, A. Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017. Google Scholar
69. Alemaryeen, A. and S. Noghanian, "On-body low-profile textile antenna with artificial magnetic conductor," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018. Google Scholar
70. Atrash, M. El, M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient II-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 648-657, 2021. Google Scholar
71. Paracha, K. N., S. K. A. Rahim, P. J. Soh, et al. "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019. Google Scholar
72. Chuquitarco-Jimenez, C. A., E. Antonino-Daviu, and M. Ferrando-Bataller, "Dual-band antenna with AMC for wearable applications," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP), 1-4, 2021. Google Scholar
73. Yin, B., M. Ye, Y. Yu, and J. Gu, "A dual-band, miniaturized, AMC-based wearable antenna for health monitoring applications," Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021. Google Scholar
74. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2550-2553, 2017. Google Scholar
75. Mersani, A., L. Osman, and J. M. Ribero, "Performance of dualband AMC antenna for wireless local area network applications," IET Microw., Antennas Propag., Vol. 12, No. 6, 872-878, 2018. Google Scholar
76. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microw., Antennas Propag., Vol. 12, No. 4, 627-635, 2018. Google Scholar
77. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 434-437, 2018. Google Scholar
78. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, June 2018. Google Scholar
79. Abirami, B. S. and E. F. Sundarsingh, "EBG-backed flexible printed Yagi-Uda antenna for on-body communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3762-3765, 2017. Google Scholar
80. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1275-1278, 2009. Google Scholar
81. Wang, W., S. Gong, X. Wang, Y. Guan, and W. Jiang, "Differential evolution algorithm and method of moments for the design of low-RCS antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 295-298, 2010. Google Scholar
82. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992. Google Scholar
83. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Adv. Opt. Mater., Vol. 6, No. 19, 1-23, 2018. Google Scholar
84. Li, Y.-Q., H. Zhang, Y.-Q. Fu, and N.-C. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 473-476, 2008. Google Scholar
85. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017. Google Scholar
86. Fan, Y., J.Wang, Y. Li, J. Zhang, Y. Han, and S. Qu, "Low-RCS and high-gain circularly polarized metasurface antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7197-7203, 2019. Google Scholar
87. Xi, Y., W. Jiang, K. Wei, T. Hong, T. Cheng, and S. Gong, "Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 656-660, 2022. Google Scholar
88. Kang, X., J. Su, H. Zhang, Z. Li, and Y. L. Yang, "Ultra-wideband RCS reduction of microstrip antenna array by optimized multi-element metasurface," Electron. Lett., Vol. 53, 520-522, 2017. Google Scholar
89. Zhang, C., X. Cao, J. Gao, et al. "Shared aperture metasurface for bi-functions: Radiation and low backward scattering performance," IEEE Access, Vol. 7, 56547-56555, 2019. Google Scholar
90. Zhang, C., J. Gao, X. Cao, L. Xu, and J. Han, "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, 2018. Google Scholar
91. Liao, W.-J., W.-Y. Zhang, Y.-C. Hou, S.-T. Chen, C. Y. Kuo, and M. Chou, "An FSS-integrated low-RCS radome design," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2076-2080, 2019. Google Scholar
92. Jia, Y. and Y. Liu, "Low-RCS and high-gain broadband circularly polarized antenna," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1923-1924, San Diego, CA, USA, 2017. Google Scholar
93. Dong, G., "Ultra-broadband perfect cross polarization conversion metasurface," Opt. Commun., Vol. 365, No. 7, 108-112, 2015. Google Scholar
94. Li, Y., "An ultra-wideband linear-to-circular polarization conversion metasurface," Chin. Phys. B, Vol. 29, No. 10, 1-13, 2020. Google Scholar
95. Gao, X., X. Y. Yu, W. P. Cao, Y. N. Jiang, and X. H. Yu, "Ultra-wideband circular-polarization converter with micro-split jerusalemcross metasurfaces," Chin. Phys. B, Vol. 25, No. 12, 1-7, 2016. Google Scholar
96. Karamirad, M., C. Ghobadi, and J. Nourinia, "Metasurfaces for wideband and efficient polarization rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1799-1804, 2021. Google Scholar
97. Yang, X., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin triband reflective cross-polarization articial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020. Google Scholar
98. Liu, Y., X. Dang, L. Li, and H. Yin, "Dual-wideband cross polarization conversion metasurface based on a symmetric split ring resonator," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), Xiamen, China, 2019. Google Scholar
99. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based re ective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1459-1463, August 2018. Google Scholar
100. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an articial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6206-6216, 2014. Google Scholar
101. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4189-4199, 2022. Google Scholar
102. Supreeyatitikul, N., T. Lertwiriyaprapa, and C. Phongcharoenpanich, "S-shaped metasurface- based wideband circularly polarized patch antenna for C-band applications," IEEE Access, Vol. 9, 23944-23955, 2021. Google Scholar
103. Zheng, Q., C. Guo, and J. Ding, "Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 679-685, 2018. Google Scholar
104. Liu, Y., Y.-X. Huang, Z.-W. Liu, S.-T. Cai, X.-M. Xiong, and J. Guo, "Design of a compact wideband CP metasurface antenna," Int. J. RF Microw. Comput.-Aided Eng., Vol. 30, No. 10, 2020. Google Scholar