1. Lloyd, S., "Enhanced sensitivity of photodetection via quantum illumination," Science, Vol. 321, No. 5895, 1463-1465, September 2008.
doi:10.1126/science.1160627 Google Scholar
2. Tan, S.-H., B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, "Quantum illumination with Gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, December 2008.
doi:10.1103/PhysRevLett.101.253601 Google Scholar
3. Sorelli, G., N. Treps, F. Grosshans, and F. Boust, "Detecting a target with quantum entanglement," IEEE Aerospace and Electronic Systems Magazine, 2021. Google Scholar
4. Shapiro, J. H., "The quantum illumination story," arXiv:1910.12277 [quant-ph], December 2019, arXiv: 1910.12277. Google Scholar
5. Shapiro, J. H., "Microwave quantum radar’s alphabet soup: QI, QI-MPA, QCN, QCN-CR," 2021 IEEE Radar Conference (RadarConf21), 1-6, IEEE, Atlanta, GA, USA, May 2021. Google Scholar
6. Torrome, R. G., N. B. Bekhti-Winkel, and P. Knott, "Quantum illumination with multiple entangled photons," Advanced Quantum Technologies, Vol. 4, No. 11, 2100101, November 2021, arXiv:2008.09455 [quant-ph].
doi:10.1002/qute.202100101 Google Scholar
7. Zhang, Z., S. Mouradian, F. N. C. Wong, and J. H. Shapiro, "Entanglement enchanced sensing in a lossy and noisy environment," Physical Review Letters, Vol. 114, No. 11, 110506, March 2015.
doi:10.1103/PhysRevLett.114.110506 Google Scholar
8. Lopaeva, E. D., I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, April 2013.
doi:10.1103/PhysRevLett.110.153603 Google Scholar
9. Fasolo, L., A. Greco, E. Enrico, F. Illuminati, R. L. Franco, D. Vitali, and P. Livreri, "Traveling wave parametric amplifiers as non-classical light source for microwave quantum illumination," Measurement: Sensors, Vol. 18, 100349, December 2021.
doi:10.1016/j.measen.2021.100349 Google Scholar
10. Barzanjeh, Sh., M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, "Reversible optical to microwave quantum interface," Physical Review Letters, Vol. 109, No. 13, 130503, September 2012, arXiv: 1110.6215.
doi:10.1103/PhysRevLett.109.130503 Google Scholar
11. Livreri, P., E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, F. Marchetti, and D. Giacomin, "Microwave quantum radar using a Josephson traveling wave parametric amplifier," 2022 IEEE Radar Conference (RadarConf22), 1-5, IEEE, New York City, NY, USA, March 2022. Google Scholar
12. Barzanjeh, S., S. Pirandola, D. Vitali, and J. M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, No. 19, eabb0451, May 2020.
doi:10.1126/sciadv.abb0451 Google Scholar
13. Barzanjeh, S., M. C. de Oliveira, and S. Pirandola, "Microwave photodetection with electro-optomechanical systems," arXiv:1410.4024 [quant-ph], October 2014, arXiv: 1410.4024. Google Scholar
14. Jo, Y., S. Lee, Y. S. Ihn, Z. Kim, and S.-Y. Lee, "Quantum illumination receiver using double homodyne detection," Physical Review Research, Vol. 3, No. 1, 013006, January 2021.
doi:10.1103/PhysRevResearch.3.013006 Google Scholar
15. Weedbrook, C., S. Pirandola, J. Thompson, V. Vedral, and M. Gu, "How discord underlies the noise resilience of quantum illumination," New Journal of Physics, Vol. 18, No. 4, 043027, April 2016, arXiv: 1312.3332.
doi:10.1088/1367-2630/18/4/043027 Google Scholar
16. Wilde, M., Quantum Information Theory, 2nd Ed., Cambridge University Press, 2017.
17. Hayashi, M., S. Ishizaka, A. Kawachi, G. Kimura, and T. Ogawa, "Introduction to quantum information science," Graduate Texts in Physics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. Google Scholar
18. Ollivier, H. and W. H. Zurek, "Quantum discord: A measure of the quantumness of correlations," Physical Review Letters, Vol. 88, No. 1, 017901, December 2001.
doi:10.1103/PhysRevLett.88.017901 Google Scholar
19. Streltsov, A., Quantum Correlations beyond Entanglement, Springer Briefs in Physics, Springer International Publishing, 2015.
doi:10.1007/978-3-319-09656-8
20. Emary, C., B. Trauzettel, and C. W. J. Beenakker, "Entangled microwave photons from quantum dots," Physical Review Letters, Vol. 95, No. 12, 127401, September 2005, arXiv:cond-mat/0502550.
doi:10.1103/PhysRevLett.95.127401 Google Scholar
21. Kumano, H., K. Matsuda, S. Ekuni, H. Sasakura, and I. Suemune, "Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source," Optics Express, Vol. 19, No. 15, 14249, July 2011.
doi:10.1364/OE.19.014249 Google Scholar
22. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets," Quantum Information Processing, Vol. 16, No. 1, 32, January 2017.
doi:10.1007/s11128-016-1494-6 Google Scholar
23. Brandsema, M. J., "Formulation and analysis of the quantum radar cross section,", Ph.D. thesis, Pennsylvania State University, United States, 2017.
doi:10.1007/s11128-016-1494-6 Google Scholar
24. Bavontaweepanya, R., "Effect of depolarizing noise on entangled photons," Journal of Physics: Conference Series, Vol. 1144, 012047, December 2018.
doi:10.1088/1742-6596/1144/1/012047 Google Scholar
25. He, J. and L. Ye, "Protecting entanglement under depolarizing noise environment by using weak measurements," Physica A: Statistical Mechanics and Its Applications, Vol. 419, 7-13, February 2015.
doi:10.1016/j.physa.2014.09.051 Google Scholar
26. Dehmani, M., H. Ez-Zahraouy, and A. Benyoussef, "Transmissions of quantum entangled states in anisotropic depolarizing channels," Journal of Russian Laser Research, Vol. 34, No. 1, 71-76, January 2013.
doi:10.1007/s10946-013-9326-y Google Scholar
27. Sk, R. and P. K. Panigrahi, "Protecting quantum coherence and entanglement in a correlated environment," Physica A: Statistical Mechanics and Its Applications, Vol. 596, 127129, June 2022.
doi:10.1016/j.physa.2022.127129 Google Scholar
28. Wootters, W. K., "Entanglement of formation of an arbitrary state of two qubits," Physical Review Letters, Vol. 80, No. 10, 2245-2248, March 1998, arXiv: quant-ph/9709029.
doi:10.1103/PhysRevLett.80.2245 Google Scholar
29. Henderson, L. and V. Vedral, "Classical, quantum and total correlations," Journal of Physics A: Mathematical and General, Vol. 34, No. 35, 6899-6905, September 2001, arXiv: quant-ph/0105028.
doi:10.1088/0305-4470/34/35/315 Google Scholar
30. Liebe, H. J., "An updated model for millimeter wave propagation in moist air," Radio Science, Vol. 20, No. 5, 1069-1089, September 1985.
doi:10.1029/RS020i005p01069 Google Scholar
31. Li, X., D.-W. Wu, C.-Y. Yang, W.-L. Li, and Q. Miao, "Quantitative analysis of decoherence of entangled microwave signals in free space," Quantum Information Processing, Vol. 18, No. 7, 200, July 2019.
doi:10.1007/s11128-019-2321-7 Google Scholar
32. Navarrete-Benlloch, C., "An introduction to the formalism of quantum information with continuous variables," IOP Concise Physics, Morgan & Claypool, USA, 2015. Google Scholar
33. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, 1976.
34. Werner, R. F., "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model," Physical Review A, Vol. 40, No. 8, 4277-4281, October 1989.
doi:10.1103/PhysRevA.40.4277 Google Scholar