Vol. 137
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-29
Radiation Performance Improvement of a Staircase Shaped Dual Band Printed Antenna with a Frequency Selective Surface (FSS) for Wireless Communication Applications
By
Progress In Electromagnetics Research C, Vol. 137, 53-64, 2023
Abstract
A staircase-shaped printed monopole antenna (SPMA) with a partial ground structure for wireless applications is proposed. The performance parameters of the designed antenna have been evaluated by integrating a novel structure of frequency selective surface (FSS) with the antenna. A Polyimide dielectric material has been utilized for designing both the antenna and the FSS reflector. The proposed SPMA integrated with designed FSS reflector operates at dual bands from 2.18 to 2.83 GHz and 4.42 to 5.58 GHz with fractional impedance bandwidth of 25.94% and 23.2%, respectively. A single-layered FSS reflector with a 5 × 5 array size is employed to obtain optimum performance. The suggested combined structure of the FSS reflector integrated staircase antenna achieves an attractive peak gain of 7.87 dBi and radiation efficiency of 98.8%. The design methodology for the antenna and unit cell design of the required FSS, analysis of field and current distributions, fabricated prototyped models of antenna and FSS along with measured results are included and discussed in this article. The proposed antenna is suitable for modern wireless communication (WLAN/Wi-Fi etc.) applications at 2.4/5.2 GHz.
Citation
Nagandla Prasad, Pokkunuri Pardhasaradhi, Boddapati Taraka Phani Madhav, Tanvir Islam, Sudipta Das, and Mohammed El Ghzaoui, "Radiation Performance Improvement of a Staircase Shaped Dual Band Printed Antenna with a Frequency Selective Surface (FSS) for Wireless Communication Applications," Progress In Electromagnetics Research C, Vol. 137, 53-64, 2023.
doi:10.2528/PIERC23072402
References

1. Kumar, J., B. Basu, F. A. Talukdar, and A. Nandi, "Stable-multiband frequency reconfigurable antenna with improved radiation efficiency and increased number of multiband operations," IET Microwaves, Antennas & Propagation, Vol. 13, No. 5, 642-648, Apr. 2019.
doi:10.1049/iet-map.2018.5602

2. Nehra, R. K. and N. S. Raghava, "Compact dual-band Zig Zag shaped implantable antenna for biomedical devices," Indian Journal of Pure & Applied Physics (IJPAP), Vol. 60, No. 10, 841-848, 2022.

3. Ayoub, A. F., "Analysis of rectangular microstrip antennas with air substrates," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1755-1766, 2003.
doi:10.1163/156939303322760335

4. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, Jun. 2018.
doi:10.1109/LAWP.2018.2832098

5. Wang, C., L. Wang, Y. Zhang, W. Hu, and X. Jiang, "A filtering dielectric resonator antenna using CPW fed for sub-6 GHz applications," Progress In Electromagnetics Research Letters, Vol. 105, 49-56, 2022.
doi:10.2528/PIERL22041002

6. Latif, S. I., L. Shafai, and C. Shafai, "Gain and efficiency enhancement of compact and miniaturised microstrip antennas using multi-layered laminated conductors," IET Microwaves, Antennas & Propagation, Vol. 5, No. 4, 402-411, 2011.
doi:10.1049/iet-map.2010.0061

7. Sheng, X., X. Lu, N. Liu, and Y. Liu, "Design of broadband high-gain Fabry-Perot antenna using frequency-selective surface," Sensors, Vol. 22, 9698, 2022.
doi:10.3390/s22249698

8. Mondal, K., "A novel-shaped reduced size FSS-based broadband high gain microstrip patch antenna for WiMAX/WLAN/ISM/X-band applications," Journal of Circuits, Systems and Computers, Vol. 30, No. 16, 2150290, Dec. 30, 2021.
doi:10.1142/S021812662150290X

9. Zhang, J.-J., B. Wu, Y.-T. Zhao, L. Song, H.-R. Zu, R.-G. Song, and D.-P. He, "Two-dimensional highly sensitive wireless displacement sensor with bilayer graphene-based frequency selective surface," IEEE Sensors Journal, Vol. 21, No. 21, 23889-23897, 2021.
doi:10.1109/JSEN.2021.3116457

10. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, M. R. Kamarudin, A. Alomainy, R. A. Abd-Alhameed, J. S. Kosha, and J. M. Noras, "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379

11. Das, P. and K. Mandal, "Passive FSS based polarization converter integrated microstrip antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 2, e22982, Feb. 2022.

12. Boukern, D., A. Bouacha, D. Aissaoui, M. Belazzoug, and T. A. Denidni, "High-gain cavity antenna combining AMC-reflector and FSS superstrate technique," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22674, 2021.
doi:10.1002/mmce.22674

13. Fernandes, E. M. F., M. W. B. da Silva, L. da Silva Briggs, A. L. P. de Siqueira Campos, H. X. de Araujo, I. R. S. Casella, C. E. Capovilla, V. P. R. M. Souza, and L. J. de Matos, "2.4-5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement," AEU --- International Journal of Electronics and Communications, Vol. 108, 235-241, 2019.
doi:10.1016/j.aeue.2019.06.021

14. Sah, S., A. Mittal, and M. R. Tripathy, "High gain dual band slot antenna loaded with frequency selective surface for WLAN/fixed wireless communication," Microwave and Optical Technology Letters, Vol. 61, No. 2, 519-525, 2019.
doi:10.1002/mop.31559

15. Ballav, S., A. Chatterjee, and S. K. Parui, "Gain augmentation of a dual-band dielectric resonator antenna with frequency selective surface superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 4, e22575, 2021.
doi:10.1002/mmce.22575

16. Ashvanth, B., B. Partibane, M. G. Alsath, and R. Kalidoss, "Gain enhanced multipattern reconfigurable antenna for vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 6, e22192, Jun. 2020.
doi:10.1002/mmce.22192

17. Marhoon, H. M., N. Qasem, N. Basil, and A. R. Ibrahim, "Design and simulation of a compact metal-graphene frequency reconfigurable microstrip patch antenna with FSS superstrate for 5G applications," International Journal on Engineering Applications, Vol. 10, 193-201, 2022.

18. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 84, 273-280, Feb. 1, 2018.

19. Devarapalli, A. B. and T. Moyra, "Design of a metamaterial loaded W-shaped patch antenna with FSS for improved bandwidth and gain," Silicon, 1-4, Oct. 10, 2022.

20. Paula, A. L., M. C. Rezende, and J. J. Barroso, "Experimental measurements and numerical simulation of permittivity and permeability of teflon in X band," Journal of Aerospace Technology and Management, Vol. 3, 59-64, Jan. 2011.
doi:10.5028/jatm.2011.03019410

21. Meher, P. R. and S. K. Mishra, "Design and development of mathematical equivalent circuit model of broadband circularly polarized semi-annular ring-shaped monopole antenna," Progress In Electromagnetics Research C, Vol. 129, 73-87, 2023.
doi:10.2528/PIERC22120909