1. Kumar, J., B. Basu, F. A. Talukdar, and A. Nandi, "Stable-multiband frequency reconfigurable antenna with improved radiation efficiency and increased number of multiband operations," IET Microwaves, Antennas & Propagation, Vol. 13, No. 5, 642-648, Apr. 2019.
doi:10.1049/iet-map.2018.5602 Google Scholar
2. Nehra, R. K. and N. S. Raghava, "Compact dual-band Zig Zag shaped implantable antenna for biomedical devices," Indian Journal of Pure & Applied Physics (IJPAP), Vol. 60, No. 10, 841-848, 2022. Google Scholar
3. Ayoub, A. F., "Analysis of rectangular microstrip antennas with air substrates," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1755-1766, 2003.
doi:10.1163/156939303322760335 Google Scholar
4. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, Jun. 2018.
doi:10.1109/LAWP.2018.2832098 Google Scholar
5. Wang, C., L. Wang, Y. Zhang, W. Hu, and X. Jiang, "A filtering dielectric resonator antenna using CPW fed for sub-6 GHz applications," Progress In Electromagnetics Research Letters, Vol. 105, 49-56, 2022.
doi:10.2528/PIERL22041002 Google Scholar
6. Latif, S. I., L. Shafai, and C. Shafai, "Gain and efficiency enhancement of compact and miniaturised microstrip antennas using multi-layered laminated conductors," IET Microwaves, Antennas & Propagation, Vol. 5, No. 4, 402-411, 2011.
doi:10.1049/iet-map.2010.0061 Google Scholar
7. Sheng, X., X. Lu, N. Liu, and Y. Liu, "Design of broadband high-gain Fabry-Perot antenna using frequency-selective surface," Sensors, Vol. 22, 9698, 2022.
doi:10.3390/s22249698 Google Scholar
8. Mondal, K., "A novel-shaped reduced size FSS-based broadband high gain microstrip patch antenna for WiMAX/WLAN/ISM/X-band applications," Journal of Circuits, Systems and Computers, Vol. 30, No. 16, 2150290, Dec. 30, 2021.
doi:10.1142/S021812662150290X Google Scholar
9. Zhang, J.-J., B. Wu, Y.-T. Zhao, L. Song, H.-R. Zu, R.-G. Song, and D.-P. He, "Two-dimensional highly sensitive wireless displacement sensor with bilayer graphene-based frequency selective surface," IEEE Sensors Journal, Vol. 21, No. 21, 23889-23897, 2021.
doi:10.1109/JSEN.2021.3116457 Google Scholar
10. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, M. R. Kamarudin, A. Alomainy, R. A. Abd-Alhameed, J. S. Kosha, and J. M. Noras, "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379 Google Scholar
11. Das, P. and K. Mandal, "Passive FSS based polarization converter integrated microstrip antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 2, e22982, Feb. 2022. Google Scholar
12. Boukern, D., A. Bouacha, D. Aissaoui, M. Belazzoug, and T. A. Denidni, "High-gain cavity antenna combining AMC-reflector and FSS superstrate technique," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22674, 2021.
doi:10.1002/mmce.22674 Google Scholar
13. Fernandes, E. M. F., M. W. B. da Silva, L. da Silva Briggs, A. L. P. de Siqueira Campos, H. X. de Araujo, I. R. S. Casella, C. E. Capovilla, V. P. R. M. Souza, and L. J. de Matos, "2.4-5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement," AEU --- International Journal of Electronics and Communications, Vol. 108, 235-241, 2019.
doi:10.1016/j.aeue.2019.06.021 Google Scholar
14. Sah, S., A. Mittal, and M. R. Tripathy, "High gain dual band slot antenna loaded with frequency selective surface for WLAN/fixed wireless communication," Microwave and Optical Technology Letters, Vol. 61, No. 2, 519-525, 2019.
doi:10.1002/mop.31559 Google Scholar
15. Ballav, S., A. Chatterjee, and S. K. Parui, "Gain augmentation of a dual-band dielectric resonator antenna with frequency selective surface superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 4, e22575, 2021.
doi:10.1002/mmce.22575 Google Scholar
16. Ashvanth, B., B. Partibane, M. G. Alsath, and R. Kalidoss, "Gain enhanced multipattern reconfigurable antenna for vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 6, e22192, Jun. 2020.
doi:10.1002/mmce.22192 Google Scholar
17. Marhoon, H. M., N. Qasem, N. Basil, and A. R. Ibrahim, "Design and simulation of a compact metal-graphene frequency reconfigurable microstrip patch antenna with FSS superstrate for 5G applications," International Journal on Engineering Applications, Vol. 10, 193-201, 2022. Google Scholar
18. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 84, 273-280, Feb. 1, 2018. Google Scholar
19. Devarapalli, A. B. and T. Moyra, "Design of a metamaterial loaded W-shaped patch antenna with FSS for improved bandwidth and gain," Silicon, 1-4, Oct. 10, 2022. Google Scholar
20. Paula, A. L., M. C. Rezende, and J. J. Barroso, "Experimental measurements and numerical simulation of permittivity and permeability of teflon in X band," Journal of Aerospace Technology and Management, Vol. 3, 59-64, Jan. 2011.
doi:10.5028/jatm.2011.03019410 Google Scholar
21. Meher, P. R. and S. K. Mishra, "Design and development of mathematical equivalent circuit model of broadband circularly polarized semi-annular ring-shaped monopole antenna," Progress In Electromagnetics Research C, Vol. 129, 73-87, 2023.
doi:10.2528/PIERC22120909 Google Scholar