1. Galushko, V., "On application of taper windows for sidelobe suppression in LFM pulse compression," Progress In Electromagnetics Research C, Vol. 107, 259-271, 2021.
doi:10.2528/PIERC20081904 Google Scholar
2. Guo, Y. and L. Yang, "Method for parameter estimation of LFM signal and its application," IET Signal Process, Vol. 13, No. 5, 538-543, 2019.
doi:10.1049/iet-spr.2018.5435 Google Scholar
3. Li, H., Y. Han, Y. Cai, et al. "Overview of the crucial technology research for radar signal sorting," Systems Engineering and Electronics, Vol. 27, No. 12, 2035-2040, 2005. Google Scholar
4. Zhang, M., L. Liu, and M. Diao, "LPI radar waveform recognition based on time-frequency distribution," Sensors, Vol. 16, No. 10, 1682, 2016.
doi:10.3390/s16101682 Google Scholar
5. Wang, S., C. Cao, X. Li, et al. "Intra-pulse modulation feature analysis for radar signals," Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018, 819-825, Springer Singapore, 2020. Google Scholar
6. Han, S., H. Kim, S. Park, et al. "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601 Google Scholar
7. Li, M., "Electronic radar signal recognition based on wavelet transform and convolutional neural network," 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), 470-474, IEEE, 2022. Google Scholar
8. Gao, Z., F. Cao, C. He, et al. "Network optimization algorithm for radar active jamming identification based on neural architecture search," Progress In Electromagnetics Research C, Vol. 126, 183-196, 2022.
doi:10.2528/PIERC22081806 Google Scholar
9. Zhu, H. and Q. Li, "Target classification by conventional radar based on bispectrum and deep CNN," Progress In Electromagnetics Research C, Vol. 130, 127-138, 2023.
doi:10.2528/PIERC22102401 Google Scholar
10. Yildirim, A. and S. Kiranyaz, "1D convolutional neural networks versus automatic classifiers for known LPI radar signals under white Gaussian noise," IEEE Access, Vol. 8, 180534-180543, 2020.
doi:10.1109/ACCESS.2020.3027472 Google Scholar
11. Zbontar, J., L. Jing, I. Mistra, et al. "Barlow twins: Self-supervised learning via redundancy reduction," International Conference on Machine Learning, PMLR, 2021. Google Scholar
12. Ba, J., J. Kiros, and G. Hinton, "Layer normalization," arXiv preprint arXiv:1607.06450, 2016. Google Scholar
13. Hendrycks, D. and K. Gimpel, "Gaussian error linear units (gelus)," arXiv preprint arXiv:1606.08415, 2016. Google Scholar
14. Mohamed, A., D. Okhonko, and L. Zettlemoyer, "Transformers with convolutional context for ASR," arXiv preprint arXiv:1904.11660, 2019. Google Scholar
15. Baevski, A., M. Auli, and A. Mohamed, "Effectiveness of self-supervised pre-training for speech recognition," arXiv preprint arXiv:1911.03912, 2019. Google Scholar
16. Alimuradov, A. and A. Tychkov, "EMD-based method to improve the efficiency of speech/pause segmentation," 2021 International Siberian Conference on Control and Communications (SIBCON), 1-10, IEEE, 2021. Google Scholar
17. Devlin, J., M. Chang, K. Lee, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018. Google Scholar
18. O'Shea, T. J., J. Corgan, and T. Clancy, "Convolutional radio modulation recognition networks," Engineering Applications of Neural Networks: 17th International Conference, EANN 2016, 213-226, Springer International Publishing, Aberdeen, UK, September 2-5, 2016. Google Scholar
19. Fredieu, C., A. Martone, and R. Buehrer, "Open-set classification of common waveforms using a deep feed-forward network and binary isolation forest models," 2022 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2022. Google Scholar
20. Xie, C., L. Zhang, and Z. Zhong, "Quasi-LFM radar waveform recognition based on fractional Fourier transform and time-frequency analysis," Journal of Systems Engineering and Electronics, Vol. 32, No. 5, 1130-1142, 2021.
doi:10.23919/JSEE.2021.000097 Google Scholar
21. Li, Y., G. Shao, and B. Wang, "Automatic modulation classification based on bispectrum and CNN," 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 311-316, IEEE, 2019. Google Scholar