Vol. 103
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-11-10
Octa-Port High Gain MIMO Antenna Backed with EBG for mm -Wave Applications
By
Progress In Electromagnetics Research B, Vol. 103, 139-157, 2023
Abstract
This article presents a miniaturized octa-port high gain multiple-input-multiple-output (MIMO) antenna loaded with an electromagnetic band gap (EBG) layer for the use in 5G wireless communication applications. Each resonator of the presented antenna is comprised of a rectangular-like patch with truncated side edges and a partial ground plane. A layer of EBG unit cells is introduced underneath the antenna elements to increase the gain and restrain the surface wave effects, obtaining improved isolation amongst the resonating elements. The -10 dB impedance bandwidth of the prospective antenna with EBG is 12 GHz (21-33 GHz), and it provides isolation of >28 dB. The peak gain of the EBG-backed antenna is 17 dB. The presented mm-wave MIMO antenna offer decent diversity proficiency metrics like envelope correlation coefficient (<0.36), diversity gain (~10 dB), and total active reflection coefficient (-24.75 dB). The overall size of the octa-port MIMO antenna is 27.2 mm × 27.2 mm. The presented MIMO antenna could be used for n257/n258/n261 mm-wave bands.
Citation
Nallagundla Suresh Babu, Abdul Quaiyum Ansari, Sachin Kumar, Binod Kanaujia, Ghanshyam Singh, and Bhawna Goyal, "Octa-Port High Gain MIMO Antenna Backed with EBG for mm -Wave Applications," Progress In Electromagnetics Research B, Vol. 103, 139-157, 2023.
doi:10.2528/PIERB23082301
References

1. Rinne, M. and O. Tirkkonen, "LTE, the radio technology path towards 4G," Computer Communications, Vol. 33, No. 16, 1894-1906, Oct. 15, 2010.
doi:10.1016/j.comcom.2010.07.001

2. Sharma, D., B. K. Kanaujia, and S. Kumar, "Compact multi-standard planar MIMO antenna for IoT/WLAN/sub-6 GHz/X-band applications," Wireless Networks, Vol. 27, 2671-2689, 2021.
doi:10.1007/s11276-021-02612-3

3. Zaidi, A. M., M. T. Beg, B. K. Kanaujia, S. Kumar, and K. Srivastava, "A dual-band branch line coupler for LTE 0.7 GHz and LTE 2.6 GHz frequencies," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21838, 2019.
doi:10.1002/mmce.21838

4. Khandelwal, M. K., S. Kumar, and B. K. Kanaujia, "Design, modeling and analysis of dualfeed defected ground microstrip patch antenna with wide axial ratio bandwidth," Journal of Computational Electronics, Vol. 17, No. 3, 1019-1028, 2018.
doi:10.1007/s10825-018-1173-1

5. Lee, G. H., S. Kumar, H. C. Choi, and K. W. Kim, "Wideband high-gain double-sided dielectric lens integrated with a dual-bowtie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 293-297, 2021.
doi:10.1109/LAWP.2020.3048165

6. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 6, 2011.
doi:10.1109/MCOM.2011.5783993

7. Qualcomm Technologies, (Dec. 2017), Spectrum for 4G and 5G, Accessed: Jan. 5, 2019, [Online], Available: https://www.qualcomm.com/news/media-center.

8. European 5G Observatory National 5G Spectrum Assignment, Accessed: May 10, 2020, [Online], Available: https://5gobservatory.eu/.

9. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 10, 2013.

10. Busari, S. A., S. Mumtaz, S. Al-Rubaye, and J. Rodriguez, "5G millimeter-wave mobile broadband: Performance and challenges," IEEE Communications Magazine, Vol. 56, No. 6, 137-143, Jun. 18, 2018.
doi:10.1109/MCOM.2018.1700878

11. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, No. 3, 366-385, Feb. 5, 2014.
doi:10.1109/JPROC.2014.2299397

12. Tiwari, R. N., P. Singh, B. K. Kanaujia, S. Kumar, and S. K. Gupta, "A low profile dual band MIMO antenna for LTE/Bluetooth/Wi-Fi/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1239-1253, 2020.
doi:10.1080/09205071.2020.1716859

13. Kumar, S., G. H. Lee, D. H. Kim, H. C. Choi, and K. W. Kim, "Dual circularly polarized planar four-port MIMO antenna with wide axial-ratio bandwidth," Sensors, Vol. 20, No. 19, 5610, 2020.
doi:10.3390/s20195610

14. Babu, N. S., A. Q. Ansari, B. K. Kanaujia, G. Singh, and S. Kumar, "Compact two-port ultrawideband multiple-input-multiple-output antenna with an electromagnetic band gap structure," Materials Today: Proceedings, Mar. 27, 2023.

15. Srivastava, K., S. Kumar, B. K. Kanaujia, S. Dwari, H. C. Choi, and K. W. Kim, "Compact eightport MIMO/diversity antenna with band rejection characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22170, 2020.
doi:10.1002/mmce.22170

16. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, Jan. 1, 2020.
doi:10.3390/electronics9010071

17. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2763-2766, Aug. 25, 2017.

18. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, Feb. 27, 2019.
doi:10.1109/LAWP.2019.2901961

19. Tariq, S., S. I. Naqvi, N. Hussain, and Y. Amin, "A metasurface-based MIMO antenna for 5G millimeter-wave applications," IEEE Access, Vol. 9, 51805-51817, Mar. 29, 2021.

20. Elabd, R. H., H. H. Abdullah, and M. Abdelazim, "Compact highly directive MIMO vivaldi antenna for 5G millimeter-wave base station," Journal of Infrared, Millimeter, and Terahertz Waves , Vol. 42, 173-194, Feb. 2021.
doi:10.1007/s10762-020-00765-4

21. Murthy, N., "Improved isolation metamaterial inspiredmm-Wave MIMO dielectric resonator antenna for 5G application," Progress In Electromagnetics Research C, Vol. 100, 247-261, 2020.
doi:10.2528/PIERC19112603

22. Akbari, M., H. A. Ghalyon, M. Farahani, A. R. Sebak, and T. A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems," IEEE Access, Vol. 5, 6527-6537, Apr. 18, 2017.

23. Farahani, M., J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarizationrotator wall," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2324-2327, Jun. 20, 2017.

24. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, J. Rodriguez, and S. Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, Aug. 8, 2019.

25. Hussain, N., M. J. Jeong, A. Abbas, and N. Kim, "Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 130293-130304, Jul. 15, 2020.

26. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 287-293, Jan. 2017.
doi:10.1049/iet-map.2016.0457

27. Hussain, N., M. J. Jeong, J. Park, and N. A. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, Apr. 2, 2019.

28. Abo El-Hassan, M., K. F. Hussein, and K. H. Awadalla, "Microstrip antenna with L-shaped slots for circularly polarised satellite applications," The Journal of Engineering, Vol. 2019, No. 12, 8428-8431, Dec. 2019.
doi:10.1049/joe.2019.0921

29. Qian, Y., R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, "A microstrip patch antenna using novel photonic band-gap structures," Microwave Journal, Vol. 42, No. 1, 66-72, Jan. 1, 1999.

30. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 14, 2003.
doi:10.1109/TAP.2003.817983

31. Kumar, A., J. Mohan, and H. Gupta, "Surface wave suppression of microstrip antenna using different EBG designs," 2015 International Conference on Signal Processing and Communication (ICSC) , 355-359, IEEE, Mar. 16, 2015.

32. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

33. Yang, F. and Y. R. Sami, "The effects of an electromagnetic bandgap (EBG) structure on two element microstrip patch antenna array," IEEE Transactions Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

34. Abdulhameed, M. K., M. M. Isa, Z. Zakaria, M. K. Mohsin, and M. L. Attiah, "Mushroom-like EBG to improve patch antenna performance for C-band satellite application," International Journal of Electrical and Computer Engineering, Vol. 8, No. 5, 3875, Oct. 1, 2018.

35. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 14, 2003.
doi:10.1109/TAP.2003.817559

36. Al-Dulaimi, Z., T. A. Elwi, and D. C. Atilla, "Design of a meander line monopole antenna array based hilbert-shaped reject band structure for MIMO applications," IETE Journal of Research, Vol. 68, No. 4, 2353-2362, Jul. 4, 2022.
doi:10.1080/03772063.2020.1743207

37. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 1, 2003.
doi:10.1049/el:20030495

38. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, Oct. 2013.
doi:10.1109/MAP.2013.6735522

39. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, Apr. 10, 2007.

40. De Cos Gomez, M. E., H. Fernandez Alvarez, and F. Las-Heras Andres, "PP-based 24 GHz wearable antenna," Wireless Networks, 1-6, Oct. 16, 2023.