Vol. 115
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-25
Multi-Channel Electromagnetic Filters Based on EIT and Fano Resonances through Parallel Segments and Asymmetric Resonators
By
Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024
Abstract
In this study, we investigate electromagnetically induced transparency (EIT) and Fano resonances, focusing on the propagation of electromagnetic waves in a system of parallel waveguides associated with asymmetric resonators. Our design includes five waveguides and two resonators, generating discrete modes influenced by their respective lengths. The EIT resonance is characterized by a prominent transmission peak flanked by two transmission zeros, while the Fano resonance is characterized by a pronounced transmission peak adjacent to a transmission zero. Using the transfer matrix method (TMM), we calculate transmission and reflection rates. Our results indicate that the EIT resonance appears when the resonator lengths show slight differences, whereas the Fano resonance appears when the resonator lengths are identical. Both resonances are sensitive to resonator lengths and permittivity indices. Consequently, the geometrical parameters of the system must be carefully selected according to the application in question, whether waveguiding or multi-channel electromagnetic filtering.
Citation
Moulay Said Khattab, Tarik Touiss, Ilyass El Kadmiri, Fatima Zahra Elamri, and Driss Bria, "Multi-Channel Electromagnetic Filters Based on EIT and Fano Resonances through Parallel Segments and Asymmetric Resonators," Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024.
doi:10.2528/PIERL23101004
References

1. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, No. 2, 167-170, 2012.
doi:10.1016/j.ijleo.2011.04.001

2. Hu, Shuling, Liwei Li, Xiaoke Yi, and Changyuan Yu, "Ultraflat widely tuned single bandpass filter based on stimulated Brillouin scattering," IEEE Photonics Technology Letters, Vol. 26, No. 14, 1466-1469, Jul. 2014.
doi:10.1109/LPT.2014.2322099

3. Caselli, Niccolo, Francesca Intonti, Federico La China, Francesco Biccari, Francesco Riboli, Annamaria Gerardino, Lianhe Li, Edmund H. Linfield, Francesco Pagliano, Andrea Fiore, and Massimo Gurioli, "Generalized Fano lineshapes reveal exceptional points in photonic molecules," Nature Communications, Vol. 9, No. 1, 396, Jan. 2018.
doi:10.1038/s41467-018-02855-3

4. Limonov, Mikhail F., Mikhail V. Rybin, Alexander N. Poddubny, and Yuri S. Kivshar, "Fano resonances in photonics," Nature Photonics, Vol. 11, No. 9, 543-554, 2017.

5. Limonov, Mikhail F., "Fano resonance for applications," Advances in Optics and Photonics, Vol. 13, No. 3, 703-771, Sep. 2021.
doi:10.1364/AOP.420731

6. Ben-Ali, Youssef, A. Ghadban, Ilyass El Kadmiri, Yassine Bouchafra, and Driss Bria, "Microwave multichannel frequency division multiplexing by defectives star waveguides," Optical Memory and Neural Networks, Vol. 31, No. 1, 76-96, 2022.

7. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, "Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits," Journal of Applied Physics, Vol. 113, No. 16, Apr. 2013.
doi:10.1063/1.4802695

8. Islam, Maidul, K. M. Dhriti, Rakesh Sarkar, and Gagan Kumar, "Tunable control of electromagnetically induced transparency effect in a double slot terahertz waveguide," Optics Communications, Vol. 483, 126632, Mar. 2021.
doi:10.1016/j.optcom.2020.126632

9. El Kadmiri, Ilyass, Youssef Ben-Ali, Younes Errouas, Aissam Khaled, and Driss Bria, "Multi-channel filters with high performance based on the creation of a geometrical defect in 1D phononic star waveguides structure," Materials Today: Proceedings, Vol. 45, No. 8, 7576-7583, 2021.
doi:10.1016/j.matpr.2021.02.580

10. Khattab, Moulay Said, Ilyass El Kadmiri, Youssef Ben-Ali, Aissam Khaled, Faouaz Jeffali, and Driss Bria, "Propagation of the acoustic waves in a one-dimensional parallel guides and symmetric/asymmetric resonators," Materials Today: Proceedings, Vol. 72, 3319-3325, 2023.

11. Khattab, Moulay Said, Youssef Ben-Ali, Jamal Barkani, Jamal Yousfi, and Driss Bria, "Induced guided acoustic waves in waveguides and resonators," Materials Today: Proceedings, Vol. 72, 3398-3403, 2023.

12. Limonov, Mikhail F., Mikhail V. Rybin, Alexander N. Poddubny, and Yuri S. Kivshar, "Fano resonances in photonics," Nature Photonics, Vol. 11, No. 9, 543-554, Sep. 2017.
doi:10.1038/NPHOTON.2017.142

13. Wang, Da-Cheng, Rong Tang, Zheng Feng, Song Sun, Shiyi Xiao, and Wei Tan, "Symmetry-assisted spectral line shapes manipulation in dielectric double-Fano metasurfaces," Advanced Optical Materials, Vol. 9, No. 4, 2001874, Feb. 2021.
doi:10.1002/adom.202001874

14. Romain, Xavier, Riccardo Degl'Innocenti, Fadi I. Baida, and Philippe Boyer, "Polarization-induced Fano resonances using wire-grid metasurfaces for the THz region," Metamaterials, Metadevices, and Metasystems 2020, Vol. 11460, 30-35, 2020.

15. Zhao, Zhenyu, Zhidong Gu, Rajour Tanyi Ako, Hui Zhao, and Sharath Sriram, "Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface," Optics Express, Vol. 28, No. 10, 15573-15586, May 2020.
doi:10.1364/OE.393714

16. Badri, S. Hadi, Hadi Soofi, and Sanam Saeid Nahaei, "Thermally reconfigurable extraordinary terahertz transmission using vanadium dioxide," Journal of the Optical Society of America B-Optical Physics, Vol. 39, No. 6, 1614-1621, Jun. 2022.
doi:10.1364/JOSAB.459639

17. Badri, S. Hadi, M. M. Gilarlue, Sanam Saeid Nahaei, and Jong Su Kim, "High-Q Fano resonance in all-dielectric metasurfaces for molecular fingerprint detection," Journal of the Optical Society of America B-Optical Physics, Vol. 39, No. 2, 563-569, Feb. 2022.
doi:10.1364/JOSAB.446803