Vol. 116
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-26
Circularly Polarized Antenna Array Using Filtering Phase Shifting Theory
By
Progress In Electromagnetics Research Letters, Vol. 116, 9-16, 2024
Abstract
A new circularly polarized (CP) array using the filtering phase shifting theory is designed. First, it is displayed that a phase designable filter can be obtained by controlling the position of the transmission zero (TZ) of the doublet topology. Next, by mapping the topology into a stub-loaded resonator (SLR) and using the patch as the last resonating mode, a phase designable 3rd-order filtering antenna element is designed. Then, two filtering antenna elements with 90° phase difference are obtained. Finally, by using the slot-coupled feed structure, four elements with phases of 0°, 90°, 180°, 270° are rotated sequentially to form a circularly polarized array. The measured results show that the impedance bandwidth is 8.1% (5.07-5.5 GHz); the axial ratio (AR) bandwidth is 6.7% (5.05-5.4 GHz); the maximum CP realized gain is 10.5 dBic; and the good filtering function is implanted.
Citation
Xin Guo, Meiyu Du, Wen Wu, Zhihong Feng, and Zhiping Wan, "Circularly Polarized Antenna Array Using Filtering Phase Shifting Theory," Progress In Electromagnetics Research Letters, Vol. 116, 9-16, 2024.
doi:10.2528/PIERL23101101
References

1. Sharma, P. C. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 6, 949-955, Nov. 1983.
doi:10.1109/TAP.1983.1143162

2. Chen, W. S., C. K. Wu, and K. L. Wong, "Compact circularly polarised microstrip antenna with bent slots," Electronics Letters, Vol. 34, No. 13, 1278-1279, Jun. 1998.
doi:10.1049/el:19980929

3. Huang, J., "A technique for an array to generate circular-polarization with linearly polarized elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 9, 1113-1124, Sep. 1986.
doi:10.1109/TAP.1986.1143953

4. Hassan, Ahmed, Fatma Elhefnawi, Atef Z. Elsherbeni, Moataza Hendi, and Salwa Elramly, "Compact circularly polarized microstrip array antenna," Microwave and Optical Technology Letters, Vol. 53, No. 3, 604-609, Mar. 2011.
doi:10.1002/mop.25772

5. Chen, Aixin, Yanjun Zhang, Zhizhang Chen, and Shunfeng Cao, "A Ka-band high-gain circularly polarized microstrip antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1115-1118, 2010.
doi:10.1109/LAWP.2010.2093866

6. Lin, Shih-Kai and Yi-Cheng Lin, "A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential-rotation arrays," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2721-2724, Jul. 2011.
doi:10.1109/TAP.2011.2152346

7. Ye, Sheng, Junping Geng, Xianling Liang, Y. Jay Guo, and Ronghong Jin, "A compact dual-band orthogonal circularly polarized antenna array with disparate elements," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1359-1364, Apr. 2015.
doi:10.1109/TAP.2015.2389811

8. Araki, K., H. Ueda, and T. Masayuki, "Numerical-analysis of circular disk microstrip antennas with parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 12, 1390-1394, Dec. 1986.
doi:10.1109/TAP.1986.1143782

9. Gan, Zheng, Zhi-Hong Tu, Ze-Ming Xie, Qing-Xin Chu, and Yue Yao, "Compact wideband circularly polarized microstrip antenna array for 45 GHz application," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6388-6392, Nov. 2018.
doi:10.1109/TAP.2018.2863243

10. Yang, S. S., Ricky Chair, Ahmed A. Kishk, Kai-Fong Lee, and Kwai-Man Luk, "Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 321-333, Feb. 2007.
doi:10.1109/TAP.2006.889819

11. Nasimuddin, Zhi Ning Chen, and K. P. Esselle, "Wideband circularly polarized microstrip antenna array using a new single feed network," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1784-1789, Jul. 2008.
doi:10.1002/mop.23481

12. Ding, Kang, Cheng Gao, Tongbin Yu, Dexin Qu, and Bing Zhang, "Gain-improved broadband circularly polarized antenna array with parasitic patches," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1468-1471, 2016.
doi:10.1109/LAWP.2016.2646400

13. Jiang, Zhi Hao and Douglas H. Werner, "A compact, wideband circularly polarized co-designed filtering antenna and its application for wearable devices with low SAR," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 3808-3818, Sep. 2015.
doi:10.1109/TAP.2015.2452942

14. Wu, Qiong-Sen, Xiao Zhang, and Lei Zhu, "Co-design of a wideband circularly polarized filtering patch antenna with three minima in axial ratio response," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5022-5030, Oct. 2018.
doi:10.1109/TAP.2018.2856104

15. Wang, Wenwei, Chunhong Chen, Shiyan Wang, and Wen Wu, "Circularly polarized patch antenna with filtering performance using polarization isolation and dispersive delay line," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1457-1461, Aug. 2020.
doi:10.1109/LAWP.2020.3005709

16. Du, Meiyu, Xin Guo, and Wen Wu, "Phase designable antenna element using filtering theory," 2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 185-187, Harbin, China, Jul. 2023.

17. Hong, Jia-Shen and Michael J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, New York, NY, USA, 2004.