Vol. 104
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-12-18
Design Challenges and Solutions of Multiband MIMO Antenna for 5G/6G Wireless Applications: A Comprehensive Review
By
Progress In Electromagnetics Research B, Vol. 104, 69-89, 2024
Abstract
A comprehensive review of multiband MIMO antennas designed for wireless applications in the 5th and 6th generation (5G and 6G) networks is presented. The demand for higher data rates and improved spectral efficiency in advanced wireless networks continues growing, and multiband MIMO antenna systems have emerged as a promising solution. This review aims to provide an in-depth analysis of the existing literature on multiband MIMO antennas for 5G and 6G wireless applications. The paper's main objectives are: (1) to emphasize the requisite of MIMO antenna for the sub-6 GHz of 5G/6G wireless communication, (2) to explore and evaluate the various design approaches to target 5G/6G frequencies, (3) To demonstrate various techniques to generate multiband, (4) To highlight the challenges and their potential solutions to design multiband MIMO for 5G/6G. (5) To investigate the methods to attain circular polarization (CP) and pattern diversity for better system performance. The review critically analyzes the latest advancements, challenges, and future research directions for multiband MIMO antennas in the context of 5G and 6G wireless networks. This comprehensive review serves as a valuable resource for researchers, engineers, and practitioners seeking a deeper understanding of multiband MIMO antennas and their potential to support the demands of the ever-evolving wireless communication technology.
Citation
Usha Sharma, Garima Srivastava, Mukesh Kumar Khandelwal, and Rashmi Roges, "Design Challenges and Solutions of Multiband MIMO Antenna for 5G/6G Wireless Applications: A Comprehensive Review," Progress In Electromagnetics Research B, Vol. 104, 69-89, 2024.
doi:10.2528/PIERB23101904
References

1. Chin, Woon Hau, Zhong Fan, and Russell Haines, "Emerging technologies and research challenges for 5G wireless networks," IEEE Wireless Communications, Vol. 21, No. 2, 106-112, Apr. 2014.
doi:10.1109/MWC.2014.6812298        Google Scholar

2. Huang, Huan-Chu, "Overview of antenna designs and considerations in 5G cellular phones," 2018 IEEE International Workshop on Antenna Technology (iWAT), 1–4, Nanjing, China, Mar. 05-07 2018.

3. Bariah, Lina, Lina Mohjazi, Sami Muhaidat, Paschalis C. Sofotasios, Gunes Karabulut Kurt, Halim Yanikomeroglu, and Octavia A. Dobre, "A prospective look: Key enabling technologies, applications and open research topics in 6G networks," IEEE Access, Vol. 8, 174792-174820, 2020.
doi:10.1109/ACCESS.2020.3019590        Google Scholar

4. Rajatheva, Nandana, Italo Atzeni, Emil Bjornson, Andre Bourdoux, Stefano Buzzi, Jean-Baptiste Dore, Serhat Erkucuk, Manuel Fuentes, Ke Guan, Yuzhou Hu, and others, "White paper on broadband connectivity in 6G," Arxiv Preprint Arxiv:2004.14247, 1–46, 2020.        Google Scholar

5. Ibrahim, Sura Khalil, Mandeep Jit Singh, Samir Salem Al-Bawri, Husam Hamid Ibrahim, Mohammad Tariqul Islam, Md. Shabiul Islam, Ahmed Alzamil, and Wazie M. Abdulkawi, "Design, challenges and developments for 5G massive MIMO antenna systems at sub 6-GHz band: A review," Nanomaterials, Vol. 13, No. 3, Feb. 2023.
doi:10.3390/nano13030520        Google Scholar

6. Khandelwal, Mukesh Kumar, Binod Kumar Kanaujia, and Sachin Kumar, "Defected ground structure: fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 2017.
doi:10.1155/2017/2018527        Google Scholar

7. Ishteyaq, Insha and Khalid Muzaffar, "Multiple input multiple output (MIMO) and fifth generation (5G): An indispensable technology for sub-6 GHz and millimeter wave future generation mobile terminal applications," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 7, 932-948, Sep. 2022.
doi:10.1017/S1759078721001100        Google Scholar

8. Kumar, Sunil and Harbinder Singh, "A comprehensive review of metamaterials/metasurface-based MIMO antenna array for 5G millimeter-wave applications," Journal of Superconductivity and Novel Magnetism, Vol. 35, No. 11, 3025-3049, Nov. 2022.
doi:10.1007/s10948-022-06408-0        Google Scholar

9. Tiwari, R. N., P. Singh, P. Kumar, and B. K. Kanaujia, "MIMO antennas for 5G and 6G wireless wystems,", 2023.
doi:https://encyclopedia.pub/entry/31461        Google Scholar

10. Sharma, Usha and Garima Srivastava, "A study of various techniques to reduce mutual coupling in MIMO antennas," 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 1--7, 2020.

11. Sharma, Usha, Garima Srivastava, and Mukesh Kumar Khandelwal, "A compact wide impedance bandwidth MIMO antenna with vias and parasitic strip," 2021 IEEE Madras Section Conference (MASCON), 1--4, 2021.

12. Sharma, Usha, Garima Srivastava, and Mukesh Kumar Khandelwal, "Small MIMO antenna with circular polarization for UHF RFID, PCS and 5G applications," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), 223-226, Electr Network, Oct. 06-08 2021.
doi:10.1109/RFID-TA53372.2021.9617405

13. Bhatti, Rashid Ahmad, Jung-Hwan Choi, and Seong-Ook Park, "Quad-band MIMO antenna array for portable wireless communications terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 129-132, 2009.
doi:10.1109/LAWP.2008.2012274        Google Scholar

14. Rao, Pasumarthi Srinivasa, Kamili Jagadeesh Babu, and Avala Mallikarjuna Prasad, "A multi-band multi-slot MIMO antenna with enhanced isolation," Wireless Personal Communications, Vol. 119, No. 3, 2239-2252, Aug. 2021.
doi:10.1007/s11277-021-08328-z        Google Scholar

15. Nandi, Sourav and Akhilesh Mohan, "A self-diplexing MIMO antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 61, No. 1, 239--244, 2019.        Google Scholar

16. Chouhan, Sanjay, Debendra Kumar Panda, Vivek Singh Kushwah, and Sarthak Singhal, "Spider-shaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/C-band applications," AEU-International Journal of Electronics and Communications, Vol. 110, 152871, 2019.
doi:10.1016/j.aeue.2019.152871        Google Scholar

17. Sumathi, K. and M. Abirami, "Hexagonal shaped fractal MIMO antenna for multiband wireless applications," Analog Integrated Circuits and Signal Processing, Vol. 104, No. 3, 277-287, Sep. 2020.
doi:10.1007/s10470-020-01685-y        Google Scholar

18. Kong, Lingyu and Xiaojian Xu, "A compact dual-band dual-polarized microstrip antenna array for MIMO-SAR applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2374-2381, May 2018.
doi:10.1109/TAP.2018.2814222        Google Scholar

19. Kumar, Aashish, C. S. Rai, and Mukesh Kumar Khandelwal, "Realization of miniaturized triple-band four-port stacked MIMO antenna for WLAN applications at 2.9/5.0/5.9 GHz bands," AEU-international Journal of Electronics and Communications, Vol. 150, 154216, Jun. 2022.
doi:10.1016/j.aeue.2022.154216        Google Scholar

20. Yao, Yuan, Xing Wang, and Junsheng Yu, "Multiband planar monopole antenna for lte MIMO systems," International Journal of Antennas and Propagation, Vol. 2012, 1-7, 2012.
doi:10.1155/2012/890705        Google Scholar

21. Agrawal, Tanvi and Shweta Srivastava, "Compact MIMO antenna for multiband mobile applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 2, 542-552, 2017.        Google Scholar

22. Asif, Sajid, Adnan Iftikhar, Muhammad N. Rafiq, Benjamin D. Braaten, Muhammad Saeed Khan, Dimitris E. Anagnostou, and Tarron S. Teeslink, "A compact multiband microstrip patch antenna with U-shaped parasitic elements," 2015 IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting, Vol. 2015, 617-618, Vancouver, Canada, Jul.19-24 2015.

23. Zheng, Qi, Chenjiang Guo, Jun Ding, and Guy A. E. Vandenbosch, "Dual-band metasurface-based CP low-profile patch antenna with parasitic elements," IET Microwaves Antennas & Propagation, Vol. 13, No. 13, 2360-2364, Oct. 30 2019.
doi:10.1049/iet-map.2019.0075        Google Scholar

24. Hediya, Alaa M., Ahmed M. Attiya, and Walid S. El-Deeb, "5G MIMO antenna system based on patched folded antenna with EBG substrate," Progress In Electromagnetics Research M, Vol. 109, 149-161, 2022.        Google Scholar

25. Hussain, Rifaqat, Muhammmad U. Khan, Eqab Almajali, and Mohammad S. Sharawi, "Split-ring-resonator-loaded multiband frequency agile slot-based MIMO antenna system," IET Microwaves Antennas $&$ Propagation, Vol. 13, No. 14, 2449-2456, Nov. 27 2019.
doi:10.1049/iet-map.2019.0333        Google Scholar

26. Bulu, I. and H. Caglayan, "A 2 x 1 multiband MIMO antenna system consisting of miniaturized patch elements," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2611-2615, 2006.
doi:doi: 10.1002/mop        Google Scholar

27. Alsath, M Gulam Nabi, Henridass Arun, Yogeshwari Panneer Selvam, Malathi Kanagasabai, Saffrine Kingsly, Sangeetha Subbaraj, Ramprabhu Sivasamy, Sandeep Kumar Palaniswamy, and Rajesh Natarajan, "An integrated tri-band/UWB polarization diversity antenna for vehicular networks," IEEE Transactions on Vehicular Technology, Vol. 67, No. 7, 5613--5620, 2018.        Google Scholar

28. BharathiDevi, Boyapati and Jayendra Kumar, "Small frequency range discrete bandwidth tunable multiband MIMO antenna for radio/LTE/ISM-2.4 GHz band applications," AEU-International Journal of Electronics and Communications, Vol. 144, 154060, Feb. 2022.
doi:10.1016/j.aeue.2021.154060        Google Scholar

29. Ikram, M., M. S. Sharawi, A. Shamim, and A. Sebak, "A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones," Microwave and Optical Technology Letters, Vol. 60, No. 6, 1468-1476, Jun. 2018.
doi:10.1002/mop.31180        Google Scholar

30. Alam, Tanjir, Sreenath Reddy Thummaluru, and Raghvendra Kumar Chaudhary, "Integration of MIMO and cognitive radio for sub-6 GHz 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2021-2025, Oct. 2019.
doi:10.1109/LAWP.2019.2936312        Google Scholar

31. Ramachandran, Anitha, Sumitha Mathew, Vivek Rajan, and Vasudevan Kesavath, "A compact triband quad-element MIMO antenna using SRR ring for high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1409-1412, 2017.
doi:10.1109/LAWP.2016.2640305        Google Scholar

32. Naidu, Praveen, Dhanekula Maheshbabu, Akkapanthula Saiharanadh, Arvind Kumar, Neelima Vummadisetty, Lam Sumanji, and And Khalim Amjad Meerja, "A compact four-port high isolation hook shaped acs fed MIMO antenna for dual frequency band applications," Progress In Electromagnetics Research C, Vol. 113, 69-82, 2021.
doi:doi: 10.2528/PIERC21042701        Google Scholar

33. Fang, Han-Sheng, Cheng-Yu Wu, Jwo-Shiun Sun, and Jung-Tang Huang, "Design of a compact MIMO antenna with pattern diversity for WLAN application," Microwave and Optical Technology Letters, Vol. 59, No. 7, 1692-1697, Jul. 2017.
doi:10.1002/mop.30616        Google Scholar

34. Hussain, Rifaqat, Muhammad U. Khan, and Mohammad S. Sharawi, "Design and analysis of a miniaturized meandered slot-line-based quad-band frequency agile MIMO antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2410-2415, Mar. 2020.
doi:10.1109/TAP.2019.2943685        Google Scholar

35. Khan, Asif, Yejun He, Zhou He, and Zhi Ning Chen, "A compact quadruple-band circular polarized MIMO antenna with low mutual coupling," IEEE Transactions on Circuits and Systems II --- Express Briefs, Vol. 70, No. 2, 501-505, Feb. 2023.
doi:10.1109/TCSII.2022.3212618        Google Scholar

36. Ekrami, Hesam and Shahrokh Jam, "A compact triple-band dual-element MIMO antenna with high port-to-port isolation for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 96, 219-227, 2018.
doi:10.1016/j.aeue.2018.09.044        Google Scholar

37. Jehangir, Syed S., Mohammad S. Sharawi, and Atif Shamim, "Highly miniaturised semi-loop meandered dual-band MIMO antenna system," IET Microwaves Antennas & Propagation, Vol. 12, No. 6, 864-871, May 23 2018.
doi:10.1049/iet-map.2017.0701        Google Scholar

38. Nadeem, Iram and Dong-You Choi, "Study on mutual coupling reduction technique for MIMO antenna," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558        Google Scholar

39. Rajnag, Vibha and Mrinal Sarvagya, "Multiband antennas design techniques for 5G networks: Present and future research directions," Global Journal of Computer Science and Technology, Vol. 18, No. 2, 1-10, 2018.        Google Scholar

40. Yang, Lingsheng, Tao Li, and Su Yan, "Highly compact MIMO antenna system for LTE/ISM applications," International Journal of Antennas and Propagation, Vol. 2015, 2015.
doi:10.1155/2015/714817        Google Scholar

41. Biswas, Ashim Kumar and Ujjal Chakraborty, "Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications," IET Microwaves Antennas & Propagation, Vol. 13, No. 4, 498-504, Mar. 27 2019.
doi:10.1049/iet-map.2018.5599        Google Scholar

42. Kumar, Naveen and Rajesh Khanna, "A two element MIMO antenna for sub-6 GHz and mmWave 5G systems using characteristics mode analysis," Microwave and Optical Technology Letters, Vol. 63, No. 2, 587-595, 2021.        Google Scholar

43. Abdelaziz, Ahmed and Ehab KI Hamad, "Design of a compact high gain microstrip patch antenna for tri-band 5G wireless communication," Frequenz, Vol. 73, No. 1-2, 45--52, 2019.        Google Scholar

44. Ojaroudi Parchin, Naser, Yasir I. A. Al-Yasir, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, and James M. Noras, "Orthogonally dual-polarised MIMO antenna array with pattern diversity for use in 5G smartphones," IET Microwaves Antennas $&$ Propagation, Vol. 14, No. 6, 457-467, May 20 2020.
doi:10.1049/iet-map.2019.0328        Google Scholar

45. Ji, Baofeng, Ying Han, Shuwen Liu, Fazhan Tao, Gaoyuan Zhang, Zhumu Fu, and Chunguo Li, "Several key technologies for 6G: Challenges and opportunities," IEEE Communications Standards Magazine, Vol. 5, No. 2, 44--51, 2021.        Google Scholar

46. Shafie, Akram, Nan Yang, Chong Han, Josep Miquel Jornet, Markku Juntti, and Thomas Kuerner, "Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities," IEEE Network, Vol. 37, No. 3, 162-169, May-Jun 2023.
doi:10.1109/MNET.118.2200057        Google Scholar

47. Dileepan, Dhanasekaran, Somasundaram Natarajan, and Rengasamy Rajkumar, "A high isolation multiband MIMO antenna without decoupling structure for WLAN/WiMax/5G applications," Progress In Electromagnetics Research C, Vol. 112, 207--219, 2021.        Google Scholar

48. Singh, Mandeep and Simranjit Singh, "Design and performance investigation of miniaturized multi-wideband patch antenna for multiple terahertz applications," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 44, 100900, May 2021.
doi:10.1016/j.photonics.2021.100900        Google Scholar

49. Khandelwal, Mukesh Kumar, Binod Kumar Kanaujia, Santanu Dwari, Sachin Kumar, and Anil Kumar Gautam, "Triple band circularly polarized compact microstrip antenna with defected ground structure for wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 6, 943-953, Sep. 2016.
doi:10.1017/S1759078715000288        Google Scholar

50. Panda, Asit K., Sudhakar Sahu, and Rabindra K. Mishra, "A compact dual-band 2 x 1 metamaterial inspired MIMO antenna system with high port isolation for LTE and WiMax applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, 1-11, Oct. 2017.
doi:10.1002/mmce.21122        Google Scholar

51. Beigi, Payam, Mirhamed Rezvani, Yashar Zehforoosh, Javad Nourinia, and Bahareh Heydarpanah, "A tiny EBG-based structure multiband MIMO antenna with high isolation for LTE/WLAN and C/X bands applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 3, 1-12, Mar. 2020.
doi:10.1002/mmce.22104        Google Scholar

52. Tan, Xiaohua, Weimin Wang, Yongle Wu, Yuanan Liu, and Ahmed A. Kishk, "Enhancing isolation in dual-band meander-line multiple antenna by employing split EBG structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2769-2774, Apr. 2019.
doi:10.1109/TAP.2019.2897489        Google Scholar

53. Wu, Wenying, Ruixing Zhi, Yingjian Chen, Han Li, Yanhua Tan, and Gui Liu, "A compact multiband MIMO antenna for IEEE 802.11 a/b/g/n applications," Progress In Electromagnetics Research Letters, Vol. 84, 59-65, 2019.
doi:10.2528/PIERL19031106        Google Scholar

54. Zhou, Enyu, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research-pier, Vol. 175, 91-104, 2022.        Google Scholar

55. Garg, Priyanka and Priyanka Jain, "Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band," IEEE Transactions on Circuits and Systems II --- Express Briefs, Vol. 67, No. 4, 675-679, Apr. 2020.
doi:10.1109/TCSII.2019.2925148        Google Scholar

56. Li, Min, Lijun Jiang, and Kwan Lawrence Yeung, "A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays," IEEE Transactions on Vehicular Technology, Vol. 69, No. 6, 6242-6253, Jun. 2020.
doi:10.1109/TVT.2020.2984044        Google Scholar

57. Saleem, Rashid, Muhammad Bilal, Hassan Tariq Chattha, Sabih Ur Rehman, Anum Mushtaq, and Muhammad Farhan Shafique, "An FSS based multiband MIMO system incorporating 3D antennas for WLAN/WiMAX/5G cellular and 5G Wi-Fi applications," IEEE Access, Vol. 7, 144732-144740, 2019.
doi:10.1109/ACCESS.2019.2945810        Google Scholar

58. Xi, Shuqi, Jing Cai, Lingrong Shen, Qiangjuan Li, and Gui Liu, "Dual-band MIMO antenna with enhanced isolation for 5G NR application," Micromachines, Vol. 14, No. 1, Jan. 2023.
doi:10.3390/mi14010095        Google Scholar

59. Abu Sufian, Md, Niamat Hussain, Hussain Askari, Seong Gyoon Park, Kook Sun Shin, and Nam Kim, "Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins," IEEE Access, Vol. 9, 73533-73543, 2021.
doi:10.1109/ACCESS.2021.3079965        Google Scholar

60. Shi, Jin, Xin Geng, Shaocheng Yan, Kai Xu, and Yanyun Chen, "An approach to achieving multiple mutual coupling nulls in MIMO stacked patch antenna for decoupling bandwidth enhancement," IEEE Transactions on Circuits and Systems II --- Express Briefs, Vol. 69, No. 12, 4809-4813, Dec. 2022.
doi:10.1109/TCSII.2022.3196020        Google Scholar

61. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, Jan. 2020.
doi:10.1109/TAP.2019.2940316        Google Scholar

62. Ramesh, R. and Usha Kiran Kommuri, "Isolation enhancement for dual-band MIMO antenna system using multiple slots loading technique," International Journal of Communication Systems, Vol. 33, No. 12, 1-13, Aug. 2020.
doi:10.1002/dac.4470        Google Scholar

63. Bayarzaya, Batchingis, Niamat Hussain, Wahaj Abbas Awan, Md Abu Sufian, Anees Abbas, Domin Choi, Jaemin Lee, and Nam Kim, "A compact MIMO antenna with improved isolation for ism, sub-6 GHz, and WLAN application," Micromachines, Vol. 13, No. 8, 1-10, Aug. 2022.
doi:10.3390/mi13081355        Google Scholar

64. Yang, Qichao, Chuanba Zhang, Qibo Cai, Tian Hong Loh, and Gui Liu, "A MIMO antenna with high gain and enhanced isolation for WLAN applications," Applied Sciences-Basel, Vol. 12, No. 5, Mar. 2022.
doi:10.3390/app12052279        Google Scholar

65. Roy, Sourav and Ujjal Chakraborty, "Mutual coupling reduction in a multi-band MIMO antenna using meta-inspired decoupling network," Wireless Personal Communications, Vol. 114, No. 4, 3231-3246, Oct. 2020.
doi:10.1007/s11277-020-07526-5        Google Scholar

66. Biswas, Ashim Kumar, Partha Sarathi Swarnakar, Soumya Sundar Pattanayak, and Ujjal Chakraborty, "Compact MIMO antenna with high port isolation for triple-band applications designed on a biomass material manufactured with coconut husk," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3975-3984, Dec. 2020.
doi:10.1002/mop.32539        Google Scholar

67. Wu, Qiong-Sen, Xiao Zhang, and Lei Zhu, "A feeding technique for wideband CP patch antenna based on 90° phase difference between tapped line and parallel coupled line," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1468-1471, Jul. 2019.
doi:10.1109/LAWP.2019.2920256        Google Scholar

68. Xu, Jun, Wei Hong, Zhi Hao Jiang, and Hui Zhang, "Wideband, low-profile patch array antenna with corporate stacked microstrip and substrate integrated waveguide feeding structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1368-1373, Feb. 2019.
doi:10.1109/TAP.2018.2883561        Google Scholar

69. Arora, Chirag, Shyam Sundar Pattnaik, and Rudra Narayan Baral, "SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73--85, 2017.        Google Scholar

70. Kim, Jae Hee, Chi-Hyung Ahn, and Joong-Chang Chun, "Bandwidth enhancement of a slot antenna with an open stub," Microwave and Optical Technology Letters, Vol. 60, No. 1, 248-252, Jan. 2018.
doi:10.1002/mop.30951        Google Scholar

71. Divya, G., K. Jagadeesh Babu, and R. Madhu, "A novel inverted elliptical frustum shaped multi-band MIMO DRA with bandwidth and isolation enhancement," AEU-International Journal of Electronics and Communications, Vol. 135, 153725, Jun. 2021.
doi:10.1016/j.aeue.2021.153725        Google Scholar

72. Ameen, Mohammad, Ozair Ahmad, and Raghvendra Kumar Chaudhary, "Bandwidth and gain enhancement of triple-band MIMO antenna incorporating metasurface-based reflector for WLAN/WiMAX applications," IET Microwaves Antennas & Propagation, Vol. 14, No. 13, 1493-1503, Oct. 28 2020.
doi:10.1049/iet-map.2020.0350        Google Scholar

73. Ghimire, Jiwan, Kwang-Wook Choi, and Dong-You Choi, "Bandwidth enhancement and mutual coupling reduction using a notch and a parasitic structure in a uwb-mimo antenna," International Journal of Antennas and Propagation, Vol. 2019, 2019.
doi:10.1155/2019/8945386        Google Scholar

74. Thakur, Ekta, Naveen Jaglan, and Samir D Gupta, "Design of compact UWB MIMO antenna with enhanced bandwidth," Progress In Electromagnetics Research C, Vol. 97, 83-94, 2019.        Google Scholar

75. Zahid, Muhammad Zeeshan, Ayesha Habib, and Longyue Qu, "Ground radiation based triple-band MIMO antenna with wideband characteristics for Wi-Fi and Wi-Fi 6E applications," Progress In Electromagnetics Research C, Vol. 133, 209--218, 2023.        Google Scholar

76. Wang, Manting, Qian Zhu, and Chi Hou Chan, "Wideband, low-profile slot-fed dipole-patch antenna and array," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2250-2254, Dec. 2020.
doi:10.1109/LAWP.2020.3029577        Google Scholar

77. Alazemi, Abdullah J. and Amjad Iqbal, "A compact and wideband MIMO antenna for high-data-rate biomedical ingestible capsules," Scientific Reports, Vol. 12, No. 1, Aug. 22 2022.
doi:10.1038/s41598-022-18468-2        Google Scholar

78. Abdelghany, Mahmoud A., Mohamed Fathy Abo Sree, Arpan Desai, and Ahmed A. Ibrahim, "Gain improvement of a dual-band CPW monopole antenna for sub-6 GHz 5G applications using amc structures," Electronics, Vol. 11, No. 14, 4-15, Jul. 2022.
doi:10.3390/electronics11142211        Google Scholar

79. Ullah, Raza, Sadiq Ullah, Rizwan Ullah, Iftikhar Ud Din, Babar Kamal, Muhammad Altaf Hussain Khan, and Ladislau Matekovits, "Wideband and high gain array antenna for 5G smart phone applications using frequency selective surface," IEEE Access, Vol. 10, 86117-86126, 2022.        Google Scholar

80. Khan, Jalal, Sadiq Ullah, Usman Ali, Farooq Ahmad Tahir, Ildiko Peter, and Ladislau Matekovits, "Design of a millimeter-wave MIMO antenna array for 5G communication terminals," Sensors, Vol. 22, No. 7, 2768, Apr. 2022.
doi:10.3390/s22072768        Google Scholar

81. Tran, Huy Hung and Nghia Nguyen-Trong, "Performance enhancement of MIMO patch antenna using parasitic elements," IEEE Access, Vol. 9, 30011-30016, 2021.
doi:10.1109/ACCESS.2021.3058340        Google Scholar

82. Mark, Robert, Neha Rajak, Kaushik Mandal, and Soma Das, "Isolation and gain enhancement using metamaterial based superstrate for MIMO applications," Radioengineering, Vol. 28, No. 4, 689-695, Dec. 2019.
doi:10.13164/re.2019.0689        Google Scholar

83. Lin, Yi-Fang, Wei-Chih Chen, Chien-Hung Chen, Chia-Te Liao, Nien-Chao Chuang, and Hua-Ming Chen, "High-gain MIMO dipole antennas with mechanical steerable main beam for 5G small cell," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1317-1321, Jul. 2019.
doi:10.1109/LAWP.2019.2914673        Google Scholar

84. Hu, Hao-Tao, Fu-Chang Chen, and Qing-Xin Chu, "A compact directional slot antenna and its application in MIMO array," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5513-5517, Dec. 2016.
doi:10.1109/TAP.2016.2621021        Google Scholar

85. Saraswat, Ritesh Kumar and Mithilesh Kumar, "A quad band metamaterial miniaturized antenna for wireless applications with gain enhancement," Wireless Personal Communications, Vol. 114, No. 4, 3595-3612, Oct. 2020.
doi:10.1007/s11277-020-07548-z        Google Scholar

86. Fakharian, Mohammad M., Mohammad Alibakhshikenari, Chan Hwang See, and Raed Abd-Alhameed, "A high gain multiband offset MIMO antenna based on a planar log-periodic array for Ku/K-band applications," Scientific Reports, Vol. 12, No. 1, 1-13, Mar. 8 2022.
doi:10.1038/s41598-022-07866-1        Google Scholar

87. Armghan, Ammar, Shobhit K. Patel, Sunil Lavadiya, Salman Qamar, Meshari Alsharari, Malek G. Daher, Ayman A. Althuwayb, Fayadh Alenezi, and Khaled Aliqab, "Design and fabrication of compact, multiband, high gain, high isolation, metamaterial-based MIMO antennas for wireless communication systems," Micromachines, Vol. 14, No. 2, Feb. 2023.
doi:10.3390/mi14020357        Google Scholar

88. Sonak, Ruchita, Mohammad Ameen, and Raghvendra Kumar Chaudhary, "High gain dual-band open-ended metamaterial antenna utilizing CRR with broadside radiation characteristics based on left-handed AMC and PEC," Materials Research Express, Vol. 6, No. 5, 0-12, May 2019.
doi:10.1088/2053-1591/ab0683        Google Scholar

89. Mohanty, Asutosh, Bikash Ranjan Behera, and N. Nasimuddin, "Hybrid metasurface loaded tri-port compact antenna with gain enhancement and pattern diversity," International Journal of RF and Microwave Computer-aided Engineering, Vol. 31, No. 11, 1-19, Nov. 2021.
doi:10.1002/mmce.22795        Google Scholar

90. Rajkumar, Sampath, Narayanaswamy Vivek Sivaraman, Sharada Murali, and Krishnasamy T. Selvan, "Heptaband swastik arm antenna for MIMO applications," IET Microwaves Antennas & Propagation, Vol. 11, No. 9, 1255-1261, Jul. 18 2017.
doi:10.1049/iet-map.2016.1098        Google Scholar

91. Malathi, A. C. J. and D. Thiripurasundari, "CSRR loaded 2 x 1 triangular MIMO antenna for LTE band operation," Advanced Electromagnetics, Vol. 6, No. 3, 78--83, 2017.        Google Scholar

92. Huang, Daiwei, Zhengwei Du, and Yan Wang, "A quad-antenna system for 4G/5G/GPS metal frame mobile phones," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1586-1590, Aug. 2019.
doi:10.1109/LAWP.2019.2924322        Google Scholar

93. Mallahzadeh, Alireza, Ailar Sedghara, and Sajad Mohammad Ali Nezhad, "A tunable multi-band meander line printed monopole antenna for MIMO systems," Proceedings of The 5th European Conference on Antennas and Propagation (EUCAP), 315--318, 2011.

94. Nandi, Sourav and Akhilesh Mohan, "CRLH unit cell loaded triband compact MIMO antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1816-1819, 2017.
doi:10.1109/LAWP.2017.2681178        Google Scholar

95. Sharma, Usha, Garima Srivastava, and Mukesh K. Khandelwal, "Quad-band two-port MIMO antenna serving for sub-7 GHz frequency with integrated circularly polarized bands," AEU-International Journal of Electronics and Communications, Vol. 160, 154503, Feb. 2023.
doi:10.1016/j.aeue.2022.154503        Google Scholar

96. Krishnamoorthy, R., Arpan Desai, Riki Patel, and Amit Grover, "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Networks, Vol. 27, No. 6, 3747-3759, Aug. 2021.
doi:10.1007/s11276-021-02734-8        Google Scholar

97. Yang, Yingying, Qingxin Chu, and Chunxu Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1573-1576, 2016.
doi:10.1109/LAWP.2016.2517188        Google Scholar

98. Das, Gourab, Anand Sharma, and Ravi Kumar Gangwar, "Triple-band hybrid antenna with integral isolation mechanism for MIMO applications," Microwave and Optical Technology Letters, Vol. 60, No. 6, 1482-1491, Jun. 2018.
doi:10.1002/mop.31188        Google Scholar

99. Liu, Wen-Wen, Zhen-Hua Cao, and Zhi Wang, "New broadband circularly polarized antenna with an inverted F-shaped feedline," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 9, 1-7, Sep. 2020.
doi:10.1002/mmce.22313        Google Scholar

100. Radhakrishnan, Ramya and Shilpi Gupta, "Axial ratio bandwidth enhanced proximity fed fractal MGS-based circularly polarized patch antenna.," Progress In Electromagnetics Research C, Vol. 122, 109-119, 2022.        Google Scholar

101. Dicandia, Francesco Alessio, Simone Genovesi, and Agostino Monorchio, "Analysis of the performance enhancement of MIMO systems employing circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4824-4835, Sep. 2017.
doi:10.1109/TAP.2017.2723083        Google Scholar

102. Ding, Kang, Rentang Hong, Dongfang Guan, Li Liu, and Yanjie Wu, "Broadband circularly polarised stacked antenna with sequential-phase feed technique," IET Microwaves Antennas & Propagation, Vol. 14, No. 8, 779-784, Jul. 1 2020.
doi:10.1049/iet-map.2019.0894        Google Scholar

103. Chakraborty, Swarup, Muhammad Asad Rahman, Md Azad Hossain, Ahmed Toaha Mobashsher, Eisuke Nishiyama, and Ichihiko Toyoda, "A 4-element MIMO antenna with orthogonal circular polarization for sub-6 GHz 5G cellular applications," SN Applied Sciences, Vol. 2, No. 7, 1-13, Jun. 6 2020.
doi:10.1007/s42452-020-2957-z        Google Scholar

104. Odhekar, Anuja A. and Amit A. Deshmukh, "Variations of slot cut and stub loaded square microstrip antenna for circular polarization," Wireless Personal Communications, Vol. 111, No. 1, 661-677, Mar. 2020.
doi:10.1007/s11277-019-06878-x        Google Scholar

105. Choi, Sangjo and Kamal Saraband, "Circularly polarized cross-tapered bowtie antenna for IR polarimetry," IEEE Access, Vol. 7, 128263-128272, 2019.
doi:10.1109/ACCESS.2019.2940089        Google Scholar

106. Saurav, Kushmanda, Debdeep Sarkar, Aditya Singh, and Kumar Vaibhav Srivastava, "Multiband circularly polarized cavity-backed crossed dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4286-4296, Oct. 2015.
doi:10.1109/TAP.2015.2459131        Google Scholar

107. Pouyanfar, Negin, Javad Nourinia, and Changiz Ghobadi, "Multiband and multifunctional polarization converter using an asymmetric metasurface," Scientific Reports, Vol. 11, No. 1, 1-15, Apr. 29 2021.
doi:10.1038/s41598-021-88771-x        Google Scholar

108. Khandelwal, Mukesh Kumar, "Metamaterial based circularly polarized four-port MIMO diversity antenna embedded with slow-wave structure for miniaturization and suppression of mutual coupling," AEU-International Journal of Electronics and Communications, Vol. 121, 153241, Jul. 2020.
doi:10.1016/j.aeue.2020.153241        Google Scholar

109. Li, Bo, Chun Yang, Zhanping Yang, Junwei Shi, Jianxing Li, and Anxue Zhang, "Circularly polarized array with enhanced isolation using magnetic metamaterials," Electronics, Vol. 8, No. 11, 1-11, Nov. 2019.
doi:10.3390/electronics8111356        Google Scholar

110. Agrawal, Niraj, Anil Kumar Gautam, and Karumudi Rambabu, "Design and packaging of multi-polarized triple-band antenna for automotive applications," AEU-International Journal of Electronics and Communications, Vol. 113, 152943, 2020.
doi:10.1016/j.aeue.2019.152943        Google Scholar

111. Kaim, Vikrant, Binod Kumar Kanaujia, and Karumudi Rambabu, "Quadrilateral spatial diversity circularly polarized MIMO cubic implantable antenna system for biotelemetry," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1260-1272, Mar. 2021.
doi:10.1109/TAP.2020.3016483        Google Scholar

112. Paul, Princy Maria, Krishnamoorthy Kandasamy, and Mohammad S. Sharawi, "A triband circularly polarized strip and srr-loaded slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5569-5573, Oct. 2018.
doi:10.1109/TAP.2018.2854911        Google Scholar

113. Saxena, Gaurav, Y. K. Awasthi, and Priyanka Jain, "Four-element pentaband MIMO antenna for multiple wireless application including dual-band circular polarization characteristics," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 4, 465-476, May 2022.
doi:10.1017/S1759078721000593        Google Scholar

114. COX, D. C., "Antenna diversity performance in mitigating the effects of portable radiotelephone orientation and multipath propagation," IEEE Transactions on Communications, Vol. 31, No. 5, 620-628, 1983.
doi:10.1109/TCOM.1983.1095860        Google Scholar

115. El Hadri, Doae, Alia Zakriti, Asmaa Zugari, Mohssine El Ouahabi, and Jamal El Aoufi, "High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth-generation applications," International Journal of Antennas and Propagation, Vol. 2020, Jul. 24 2020.
doi:10.1155/2020/2740920        Google Scholar

116. Chaudhary, Prashant, Ashwani Kumar, and B. K. Kanaujia, "A low-profile wideband circularly polarized MIMO antenna with pattern and polarization diversity," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 4, 316-322, May 2020.
doi:10.1017/S175907871900134X        Google Scholar

117. Ahmad, Uzair, Sadiq Ullah, Umair Rafique, Dong-You Choi, Rizwan Ullah, Babar Kamal, and Ashfaq Ahmad, "MIMO antenna system with pattern diversity for sub-6 GHz mobile phone applications," IEEE Access, Vol. 9, 149240-149249, 2021.
doi:10.1109/ACCESS.2021.3125097        Google Scholar

118. Chaudhary, Prashant, Ashwani Kumar, and Avanish Yadav, "Pattern diversity MIMO 4G and 5G wideband circularly polarized antenna with integrated LTE band for mobile handset," Progress In Electromagnetics Research M, Vol. 89, 111--120, 2020.        Google Scholar

119. Boukarkar, Abdelheq, Xian Qi Lin, Yuan Jiang, Li Ying Nie, Peng Mei, and Yi Qiang Yu, "A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 134-137, Jan. 2018.
doi:10.1109/LAWP.2017.2777839        Google Scholar

120. Xu, Zhan and Changjiang Deng, "High-isolated MIMO antenna design based on pattern diversity for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 467-471, Mar. 2020.
doi:10.1109/LAWP.2020.2966734        Google Scholar

121. Zhang, Ke, Zhi Hao Jiang, Taiwei Yue, Yan Zhang, Wei Hong, and Douglas H. Werner, "A compact dual-band triple-mode antenna with pattern and polarization diversities enabled by shielded mushroom structures," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6229-6243, Oct. 2021.
doi:10.1109/TAP.2021.3069550        Google Scholar

122. Kasyap, Ramkrishnan B. and Gourang Namdeo Mulay, "Design of compact multiband pattern diversity antenna for WiMax, LTE and WLAN applications," Microsystem Technologies-micro-and Nanosystems-information Storage and Processing Systems, Vol. 23, No. 6, 1949-1960, Jun. 2017.
doi:10.1007/s00542-016-3000-6        Google Scholar

123. Shalini, M. and Ganesh M. Madhan, "Performance predictions of slotted graphene patch antenna for multi-band operation in terahertz regime," Optik, Vol. 204, 164223, Feb. 2020.
doi:10.1016/j.ijleo.2020.164223        Google Scholar

124. Bokhari, B. Syed Moinuddin, M. A. Bhagyaveni, and R. Rajkumar, "On the use of graphene for quad-band thz microstrip antenna array with diversity reception for biomedical applications," Applied Physics A --- Materials Science & Processing, Vol. 127, No. 6, 1-9, Jun. 2021.
doi:10.1007/s00339-021-04616-4        Google Scholar

125. Rasilainen, Kimmo, Tung Duy Phan, Markus Berg, Aarno Parssinen, and Ping Jack Soh, "Hardware aspects of sub-THz antennas and reconfigurable intelligent surfaces for 6G communications," IEEE Journal on Selected Areas in Communications, Vol. 41, No. 8, 2530-2546, Aug. 2023.
doi:10.1109/JSAC.2023.3288250        Google Scholar

126. Aslam, Muhammad Muzamil, Liping Du, Xiaoyan Zhang, Yueyun Chen, Zahoor Ahmed, and Bushra Qureshi, "Sixth generation (6G) cognitive radio network (CRN) application, requirements, security issues, and key challenges," Wireless Communications & Mobile Computing, Vol. 2021, Oct. 13 2021.
doi:10.1155/2021/1331428        Google Scholar

127. Jamshed, Muhammad Ali, Ali Nauman, Muhammad Ali Babar Abbasi, and Sung Won Kim, "Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey," IEEE Access, Vol. 8, 113246-113261, 2020.
doi:10.1109/ACCESS.2020.3002989        Google Scholar

128. Banafaa, Mohammed, Ibraheem Shayea, Jafri Din, Marwan Hadri Azmi, Abdulaziz Alashbi, Yousef Ibrahim Daradkeh, and Abdulraqeb Alhammadi, "6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities," Alexandria Engineering Journal, Vol. 64, 245-274, Feb. 1 2023.
doi:10.1016/j.aej.2022.08.017        Google Scholar

129. Mashayekhi, Mohammad, Pooria Kabiri, Amir Saman Nooramin, and Mohammad Soleimani, "A reconfigurable graphene patch antenna inverse design at terahertz frequencies," Scientific Reports, Vol. 13, No. 1, 1-9, May 24 2023.
doi:10.1038/s41598-023-35036-4        Google Scholar

130. Ibrahim, Ahmad S., Ahmad M. Yacoub, and Daniel N. Aloi, "A 3-dimensional multiband antenna for vehicular 5G sub-6 GHz/GNSS/V2X applications," International Journal of Antennas and Propagation, Vol. 2022, Jul. 5 2022.
doi:10.1155/2022/5609110        Google Scholar

131. Choukiker, Yogesh Kumar, Satish K. Sharma, and Santanu K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, Mar. 2014.
doi:10.1109/TAP.2013.2295213        Google Scholar

132. Mun, Byeonggwi, Changwon Jung, Myun-Joo Park, and Byungje Lee, "A compact frequency-reconfigurable multiband lte MIMO antenna for laptop applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1389-1392, 2014.
doi:10.1109/LAWP.2014.2339802        Google Scholar

133. Fernandez, Sean C. and Satish K. Sharma, "Multiband printed meandered loop antennas with MIMO implementations for wireless routers," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 96-99, 2013.
doi:10.1109/LAWP.2013.2243104        Google Scholar

134. Roges, Rashmi, Praveen Kumar Malik, Sandeep Sharma, Sandeep Kumar Arora, Fidele Maniraguha, et al. "A miniaturized, dual-port, multiband MIMO with CSRR DGS for internet of things using WLAN communication standards," Wireless Communications and Mobile Computing, Vol. 2023, 2023.        Google Scholar

135. Jussawalla, M. and C. H. Lee, "Multimode multiband (VHF/UHF/L/802.11a/b) antennas for broadcasting and telecommunication services," Pacific Serv. Enterp. Pacific Coop., Vol. 10, 93-106, 2019.        Google Scholar

136. Bukhari, Bisma and Ghulam M. Rather, "Multiband compact MIMO antenna for cognitive radio, IoT and 5G new radio sub 6 GHz applications," Progress In Electromagnetics Research C, Vol. 121, 265--279, 2022.        Google Scholar

137. Iqbal, Amjad, Muath Al-Hasan, Ismail Ben Mabrouk, and Mourad Nedil, "A compact implantable MIMO antenna for high-data-rate biotelemetry applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 1, 631-640, Jan. 2022.
doi:10.1109/TAP.2021.3098606        Google Scholar

138. Saeidi, Tale, Ahmed Jamal Abdullah Al-Gburi, and Saeid Karamzadeh, "A miniaturized full-ground dual-band MIMO spiral button wearable antenna for 5G and sub-6 GHz communications," Sensors, Vol. 23, No. 4, Feb. 2023.
doi:10.3390/s23041997        Google Scholar

139. Pan, Yan, Yuehui Cui, and Rong Lin Li, "Investigation of a triple-band multibeam MIMO antenna for wireless access points," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1234-1241, Apr. 2016.
doi:10.1109/TAP.2016.2526082        Google Scholar

140. Xiao, Bing, Hang Wong, Di Wu, and Kwan L. Yeung, "Design of small multiband full-screen smartwatch antenna for IoT applications," IEEE Internet of Things Journal, Vol. 8, No. 24, 17724-17733, Dec. 15 2021.
doi:10.1109/JIOT.2021.3082535        Google Scholar