Vol. 118
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-04
Radio-Frequency Energy Harvester for a Hybrid Power Supply with Constant Voltage Output to a Water Meter
By
Progress In Electromagnetics Research Letters, Vol. 118, 33-39, 2024
Abstract
This manuscript proposes a hybrid energy harvest and management system to manage harvested ambient thermal and radio frequency (RF) energy and provide constant voltage for an electronic water meter. It mainly includes an antenna, a rectifier, thermoelectric generators (TEGs), and an energy management circuit. The antenna harvests the ambient RF power, and the rectifier converts it to DC power. The harvested RF and thermal powers are stored in a capacitor and managed by an FEH710 energy management circuit to power an electronic water meter. Eight thermoelectric generators convert thermal energy into DC power. The proposed hybrid energy harvesting and management system has been evaluated by simulation and measurement. The antenna's reflection coefficient and peak gain at 2.45 GHz are -30 dB and 3.6 dBi, respectively. The rectifier's measured RF-DC power conversion efficiency (PCE) is 66.7% at 0 dBm. As a demonstration, a commercial electronic water meter worksstably by the harvested ambient RF and thermal energy. The proposed hybrid energy harvesting system is expected to find potential practical applications for the Internet of Things (IoT) in environments with RF radiation coverage and temperature gradients.
Citation
Junlin Mi, Ruinan Fan, Jianwei Jing, Liping Yan, and Changjun Liu, "Radio-Frequency Energy Harvester for a Hybrid Power Supply with Constant Voltage Output to a Water Meter," Progress In Electromagnetics Research Letters, Vol. 118, 33-39, 2024.
doi:10.2528/PIERL23121503
References

1. Halivni, Bar and Mor Mordechai Peretz, "Current controlled transmitter for high frequency WPT utilizing non-invasive PCB integrated rogowski current sensor," 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), 1639-1644, IEEE, Orlando, FL, USA, Mar. 2023.
doi:10.1109/APEC43580.2023.10131355

2. Pandey, Rashmi, Ashok Kumar Shankhwar, and Ashutosh Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.

3. Pandey, Kuldeep and Ritesh Sadiwala, "Dual-port MIMO antenna design for IoT: Analysis and implementation," Journal of Integrated Science and Technology, Vol. 12, No. 3, 768, 2024.
doi:10.62110/sciencein.jist.2024.v12.768

4. Salvati, Raffaele, Valentina Palazzi, Giordano Cicioni, Guendalina Simoncini, Federico Alimenti, Manos M. Tentzeris, Paolo Mezzanotte, and Luca Roselli, "Zero-power wireless pressure sensor based on backscatterer harmonic transponder in a WPT context," 2022 Wireless Power Week (WPW), 199-202, IEEE, Bordeaux, France, Jul. 2022.
doi:10.1109/WPW54272.2022.9854038

5. Shiba, Konosuke and Masaharu Takahashi, "A development of WPT devices for wireless-powered small sensors for home health care," 2022 International Symposium on Antennas and Propagation (ISAP), 81-82, IEEE, Sydney, Australia, 2022.
doi:10.1109/ISAP53582.2022.9998839

6. He, Zhongqi and Changjun Liu, "A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 4, 433-436, Apr. 2020.
doi:10.1109/LMWC.2020.2979711

7. Pandey, Rashmi, Ashok Kumar Shankhwar, and Ashutosh Singh, "Design and analysis of rectenna at 2.42 GHz for Wi-Fi energy harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.

8. Lin, Wei and Richard W. Ziolkowski, "Wireless power transfer (WPT) enabled IoT sensors based on ultra-thin electrically small antennas," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Mar. 2021.

9. He, Zhongqi, Jing Lan, and Changjun Liu, "Compact rectifiers with ultra-wide input power range based on nonlinear impedance characteristics of Schottky diodes," IEEE Transactions on Power Electronics, Vol. 36, No. 7, 7407-7411, Jul. 2021.
doi:10.1109/TPEL.2020.3046083

10. He, Zhongqi, Hang Lin, and Changjun Liu, "A novel class-C rectifier with high efficiency for wireless power transmission," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 12, 1197-1200, Dec. 2020.
doi:10.1109/LMWC.2020.3029441

11. Takamori, Ryo, Midori Kawasaki, Harunobu Seita, Kentaro Nishimori, Naoki Honma, Kenjiro Nishikawa, Yusuke Maru, and Sigeo Kawasaki, "Wireless sensor network in reusable vehicle rocket and low-power 20–30 GHz amplifier MMIC," 2013 IEEE Wireless Power Transfer (WPT), 96-99, Perugia, Italy, May 2013.

12. Jin, Chunyang, J. Wang, D. Y. Cheng, K. F. Cui, and M. Q. Li, "A novel wideband rectifier with two-level impedance matching network for ambient wireless energy harvesting," Journal of Physics: Conference Series, Vol. 1168, No. 2, 022020, Dec. 2019.
doi:10.1088/1742-6596/1168/2/022020

13. Barton, Taylor W., Joshua M. Gordonson, and David J. Perreault, "Transmission line resistance compression networks and applications to wireless power transfer," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 252-260, Mar. 2015.
doi:10.1109/JESTPE.2014.2319056

14. Boursianis, Achilles D., Maria S. Papadopoulou, Stavros Koulouridis, Paolo Rocca, Apostolos Georgiadis, Manos M. Tentzeris, and Sotirios K. Goudos, "Triple-band single-layer rectenna for outdoor RF energy harvesting applications," Sensors, Vol. 21, No. 10, 3460, May 2021.
doi:10.3390/s21103460

15. Kyono, T., R. O. Suzuki, and K. Ono, "Conversion of unused heat energy to electricity by means of thermoelectric generation in condenser," IEEE Transactions on Energy Conversion, Vol. 18, No. 2, 330-334, Jun. 2003.
doi:10.1109/TEC.2003.811721

16. Auckland, D. W., R. Shuttleworth, A. C. Luff, B. P. Axcell, and M. Rahman, "Design of a semiconductor thermoelectric generator for remote subsea wellheads," IEE Proceedings --- Electric Power Applications, Vol. 142, No. 2, 65-70, Mar. 1995.
doi:10.1049/ip-epa:19951707

17. Kim, Rae-Young and Jih-Sheng Lai, "A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications," 2007 IEEE Industry Applications Annual Meeting, 977-984, IEEE, Sep. 2007.

18. Collado, Ana and Apostolos Georgiadis, "Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 8, 2225-2234, Aug. 2013.
doi:10.1109/TCSI.2013.2239154

19. Lemey, Sam, Frederick Declercq, and Hendrik Rogier, "Textile antennas as hybrid energy-harvesting platforms," Proceedings of the IEEE, Vol. 102, No. 11, 1833-1857, Nov. 2014.
doi:10.1109/JPROC.2014.2355872

20. Guo, Lei, Xiaoqiang Gu, Peng Chu, Simon Hemour, and Ke Wu, "Collaboratively harvesting ambient radiofrequency and thermal energy," IEEE Transactions on Industrial Electronics, Vol. 67, No. 5, 3736-3746, May 2020.
doi:10.1109/TIE.2019.2914627

21. Gu, Xiaoqiang, Lei Guo, Moussa Harouna, Simon Hemour, and Ke Wu, "Accurate analytical model for hybrid ambient thermal and RF energy harvester," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 1122-1125, Philadelphia, PA, USA, Jun. 2018.

22. Bakytbekov, Azamat, Thang Q. Nguyen, Ge Zhang, Michael S. Strano, Khaled N. Salama, and Atif Shamim, "Dual-function triple-band heatsink antenna for ambient RF and thermal energy harvesting," IEEE Open Journal of Antennas and Propagation, Vol. 3, 263-273, 2022.
doi:10.1109/OJAP.2022.3149392

23. Bakytbekov, Azamat, Zere Iman, and Atif Shamim, "3D printed bifunctional triple-band heatsink antenna for RF and thermal energy harvesting," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1563-1564, Montreal, QC, Canada, Jul. 2020.
doi:10.1109/IEEECONF35879.2020.9330253

24. Jing, Jianwei, Jiafei Pang, Hang Lin, Zhenyu Qiu, and Changjun Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERL20071104

25. Liu, Changjun, Feifei Tan, Hexin Zhang, and Qijuan He, "A novel single-diode microwave rectifier with a series band-stop structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 2, 600-606, Feb. 2017.
doi:10.1109/TMTT.2016.2626286

26. Mahan, G., B. Sales, and J. Sharp, "Thermoelectric materials: New approaches to an old problem," Physics Today, Vol. 50, No. 3, 42-47, Mar. 1997.
doi:10.1063/1.881752

27. Song, Chaoyun, Ping Lu, and Shanpu Shen, "Highly efficient omnidirectional integrated multiband wireless energy harvesters for compact sensor nodes of internet-of-things," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 8128-8140, Sep. 2021.
doi:10.1109/TIE.2020.3009586

28. Vital, Dieff, Shubhendu Bhardwaj, and John L. Volakis, "Textile-based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2323-2331, Mar. 2020.
doi:10.1109/TAP.2019.2948521

29. Sun, Hucheng, Jie Huang, and Yong Wang, "An omnidirectional rectenna array with an enhanced RF power distributing strategy for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4931-4936, Jun. 2022.
doi:10.1109/TAP.2021.3138542