Vol. 116
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2025-10-17
Model of a Planar Cherenkov-Type Antenna for Microwave Applications
By
Progress In Electromagnetics Research B, Vol. 116, 19-32, 2026
Abstract
In this paper, a radiator employing the Cherenkov mechanism for electromagnetic energy transfer from an optically less dense medium into a more dense one is developed and studied using a two-dimensional numerical model. The radiator’s principal components are a dielectric prism and an open dielectric waveguide, where the phase velocity of eigenwaves exceeds that within the prism. For two linear field polarizations in the 24 GHz to 64 GHz range, this radiator exhibits high efficiency (over 93%) and radiation patterns with main lobes that closely coincide in both direction and width. The direction of radiation demonstrates strong agreement with predictions from the Cherenkov wave theory and shows weak dependence on frequency. These characteristics make the developed antenna suitable for directional emission and reception of electromagnetic pulses of various polarizations with spectral bandwidths of up to one octave or more. It is demonstrated that the radiation patterns of such antennas can be electrically controlled by altering the permittivity of the dielectric waveguide using an external control signal. The proposed antenna design avoids expensive fabrication processes and can be scaled to sub-millimeter wave ranges without significant modifications.
Citation
Vadym Pazynin, Kostyantyn Sirenko, and Wilhelm Keusgen, "Model of a Planar Cherenkov-Type Antenna for Microwave Applications," Progress In Electromagnetics Research B, Vol. 116, 19-32, 2026.
doi:10.2528/PIERB25071805
References

1. Čerenkov, P. A., "Visible radiation produced by electrons moving in a medium with velocities exceeding that of light," Physical Review, Vol. 52, No. 4, 378, Aug. 1937.
doi:10.1103/PhysRev.52.378

2. Frank, I. and I. Tamm, "Coherent visible radiation of fast electrons passing through matter," Comptes Rendus (Dokl.) Acad.Sci. URSS, Vol. 14, 109-114, 1937.

3. Tamm, I., "Radiation emitted by uniformly moving electrons," Journal of Physics USSR, Vol. 1, 439-454, 1939.

4. Watson, Alan A., "The discovery of Cherenkov radiation and its use in the detection of extensive air showers," Nuclear Physics B --- Proceedings Supplements, Vol. 212-213, 13-19, 2011.
doi:10.1016/j.nuclphysbps.2011.03.003

5. Branger, E., S. Grape, S. Jacobsson Svärd, P. Jansson, and E. Andersson Sundén, "On Cherenkov light production by irradiated nuclear fuel rods," Journal of Instrumentation, Vol. 12, No. 06, T06001, Jun. 2017.
doi:10.1088/1748-0221/12/06/T06001

6. Mc Larney, Benedict, Magdalena Skubal, and Jan Grimm, "A review of recent and emerging approaches for the clinical application of Cerenkov luminescence imaging," Frontiers in Physics, Vol. 9, 684196, Jul. 2021.
doi:10.3389/fphy.2021.684196

7. Zhang, Liwen, Hongliang Xu, and Weihao Liu, "Inverse Cherenkov dielectric laser accelerator with alternating phase focusing for subrelativistic particles," Physical Review Accelerators and Beams, Vol. 27, No. 11, 110401, 2024.
doi:10.1103/physrevaccelbeams.27.110401

8. Hertel, T. W. and G. S. Smith, "Pulse radiation from an insulated linear antenna: An analogue of Cherenkov radiation from a moving charge," IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network, Vol. 2, 964-967, Atlanta, GA, USA, Jun. 1998.
doi:10.1109/APS.1998.702110

9. Hertel, T. W. and G. S. Smith, "Pulse radiation from an insulated antenna: An analog of Cherenkov radiation from a moving charged particle," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 2, 165-172, Feb. 2000.
doi:10.1109/8.833065

10. Melezhik, P. N., M. Ney, S. S. Sautbekov, Yuriy Sirenko, Alexey A. Vertiy, and N. P. Yashina, "Directional antenna based on the Vavilov-Cherenkov radiation," Telecommunications and Radio Engineering, Vol. 75, No. 12, 1051-1056, 2016.
doi:10.1615/telecomradeng.v75.i12.20

11. Melezhik, Petro, Michel Ney, Seil Sautbekov, Kostyantyn Sirenko, Yuriy Sirenko, Alexey Vertiy, and Nataliya Yashina, "Cherenkov radiation based antenna with the funnel-shaped directional pattern," Electromagnetics, Vol. 38, No. 1, 34-44, 2018.
doi:10.1080/02726343.2017.1406693

12. Sautbekov, Seil, Kostyantyn Sirenko, Yuriy Sirenko, and Anatoliy Yevdokymov, "Diffraction radiation effects: A theoretical and experimental study," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 73-93, Oct. 2015.
doi:10.1109/map.2015.2470673

13. Sirenko, Yu, P. Melezhik, A. Poyedinchuk, S. Sautbekov, A. Shmat’ko, K. Sirenko, A. Vertiy, and N. Yashina, "Radiation of electromagnetic waves induced by electron beam passage over artificial material periodic interfaces," Chap. 5 in An Essential Guide to Electrodynamics, 169-206, Nova Science Publishers, 2019.

14. Sirenko, Yuriy, Seil Sautbekov, Nataliya Yashina, and Kostyantyn Sirenko, "A new approach to formation and directed radiation of powerful short radio pulses," IEEE Transactions on Plasma Science, Vol. 50, No. 10, 3422-3433, Oct. 2022.
doi:10.1109/tps.2022.3184268

15. Belonogaya, Ekaterina S., Sergey N. Galyamin, and Andrey V. Tyukhtin, "Short-wavelength radiation of a charge moving in the presence of a dielectric prism," Journal of the Optical Society of America B, Vol. 32, No. 4, 649-654, 2015.
doi:10.1364/josab.32.000649

16. Tyukhtin, A. V., S. N. Galyamin, and V. V. Vorobev, "Peculiarities of Cherenkov radiation from a charge moving through a dielectric cone," Physical Review A, Vol. 99, No. 2, 023810, Feb. 2019.
doi:10.1103/physreva.99.023810

17. Tyukhtin, Andrey V., Sergey N. Galyamin, Viktor V. Vorobev, and Aleksandra A. Grigoreva, "Cherenkov radiation of a charge flying through the inverted conical target," Physical Review A, Vol. 102, No. 5, 053514, Nov. 2020.
doi:10.1103/physreva.102.053514

18. Galyamin, Sergey N. and Andrey V. Tyukhtin, "Cherenkov radiation of a charge in axicon-based dielectric concentrator," Physical Review Accelerators and Beams, Vol. 23, No. 11, 113001, Nov. 2020.
doi:10.1103/physrevaccelbeams.23.113001

19. Askaryan, G. A., "Cerenkov radiation and transition radiation from electromagnetic waves," Soviet Physics JETP, Vol. 15, No. 5, 943-946, Nov. 1962.

20. Askar'yan, G. A., "Emission of radio waves upon modulation of an intense beam of light in a medium," Soviet Physics JETP, Vol. 18, No. 2, 441-443, Feb. 1964.

21. Kuhn, R., Mikrowellenantennen, Veb Verlag Technik, 1964.

22. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

23. Unger, H.-G., Planar Optical Waveguides and Fibres, Clarendon Press, 1977.

24. Bakunov, M. I., E. A. Mashkovich, M. V. Tsarev, and S. D. Gorelov, "Efficient Cherenkov-type terahertz generation in Si-prism-LiNbO3-slab structure pumped by nanojoule-level ultrashort laser pulses," Applied Physics Letters, Vol. 101, No. 15, 151102, Oct. 2012.
doi:10.1063/1.4757882

25. Bakunov, M. I., E. A. Mashkovich, and E. V. Svinkina, "Asymmetric Cherenkov radiation for improved terahertz generation in the Si-prism-coupled LiNbO3 layer," Optics Letters, Vol. 39, No. 24, 6779-6782, 2014.
doi:10.1364/OL.39.006779

26. Bakunov, M. I., E. S. Efimenko, S. D. Gorelov, N. A. Abramovsky, and S. B. Bodrov, "Efficient Cherenkov-type optical-to-terahertz converter with terahertz beam combining," Optics Letters, Vol. 45, No. 13, 3533-3536, 2020.
doi:10.1364/ol.391871

27. Sirenko, Y., S. Strom, and N. Yashina, Modeling and Analysis of Transient Processes in Open Resonant Structures: New Methods and Techniques, Springer, 2007.

28. Sirenko, Kostyantyn and Yuriy Sirenko, "The exact absorbing conditions method in the analysis of open electrodynamic structures," Chap. 5 in Electromagnetic Waves in Complex Systems: Selected Theoretical and Applied Problems, 225-326, Springer, 2016.

29. Sirenko, Y., V. Pazynin, K. Sirenko, and N. Yashina, "Exact absorbing conditions for initial boundary value problems of computational electrodynamics. A review," Chap. 3 in A Closer Look at Boundary Value Problems, 43-124, Nova Science Publishers, 2020.

30. Sirenko, Yuriy, "Exact 'absorbing' conditions in outer initial boundary-value problems of the electrodynamics of nonsinusoidal waves. Part 3: Compact inhomogeneities in free space," Telecommunications and Radio Engineering, Vol. 59, No. 1&2, 1-31, 2003.
doi:10.1615/TelecomRadEng.v59.i12.10

31. Sirenko, Yuriy, "Exact 'absorbing' conditions in outer initial boundary-value problems of the electrodynamics of nonsinusoidal waves. Part 4: Pulse antennas," Telecommunications and Radio Engineering, Vol. 59, No. 3&4, 1-15, 2003.
doi:10.1615/TelecomRadEng.v59.i3-4.10

32. Sirenko, Kostyantyn, Yuriy Sirenko, and Hakan Bağcı, "Exact absorbing boundary conditions for periodic three-dimensional structures: Derivation and implementation in discontinuous Galerkin time-domain method," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3, 108-120, Jul. 2018.
doi:10.1109/JMMCT.2018.2859315

33. Sirenko, Kostyantyn, Vadim Pazynin, Yuriy K. Sirenko, and Hakan Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/pier10102707

34. Taflove, A. and Susan C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, Artech House, 2000.

35. Pazynin, V. L., S. S. Sautbekov, K. Yu. Sirenko, Yuriy Sirenko, A. A. Vertiy, and N. P. Yashina, "Comparison of exact and approximate absorbing conditions for initial boundary value problems of the electromagnetic theory of gratings," Telecommunications and Radio Engineering, Vol. 77, No. 18, 1581-1595, 2018.
doi:10.1615/telecomradeng.v77.i18.10

36. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.

37. Felsen, Leopold B. and Nathan Marcuvitz, Radiation and Scattering of Waves, John Wiley & Sons, 1994.
doi:10.1109/9780470546307

38. Whittaker, Thomas, Shiyu Zhang, Alexander Powell, Chris J. Stevens, John Yiannis C. Vardaxoglou, and William Whittow, "3D printing materials and techniques for antennas and metamaterials: A survey of the latest advances," IEEE Antennas and Propagation Magazine, Vol. 65, No. 3, 10-20, Jun. 2023.
doi:10.1109/map.2022.3229298

39. Lamb, James W., "Miscellaneous data on materials for millimetre and submillimetre optics," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 12, 1997-2034, Dec. 1996.
doi:10.1007/bf02069487

40. Born, M. and E. Wolf, Principles of optics, Pergamon Press, 1968.

41. Pazynin, V., F.-C. Lutz, K. Schäpers, F. Bette, A. Begimova, and W. Keusgen, "Leaky wave antenna with metal-dielectric reflective grating for microwave applications in the 24-28 GHz range," Proc. of IEEE AP-S International Symposium/North American Radio Science Meeting, 2287-2290, Ottawa, Canada, Jul. 2025.

42. Kong, L. B., S. Li, T. S. Zhang, J. W. Zhai, F. Y. C. Boey, and J. Ma, "Electrically tunable dielectric materials and strategies to improve their performances," Progress in Materials Science, Vol. 55, No. 8, 840-893, 2010.
doi:10.1016/j.pmatsci.2010.04.004

43. Southworth, George C., "Principles and applications of waveguide transmission," Bell System Technical Journal, Vol. 29, No. 3, 295-342, 1950.
doi:10.1002/j.1538-7305.1950.tb02348.x

44. Duan, Zhaoyun, Bae-Ian Wu, Jie Lu, Jin Au Kong, and Min Chen, "Reversed Cherenkov radiation in a waveguide filled with anisotropic double-negative metamaterials," Journal of Applied Physics, Vol. 104, No. 6, 063303, Sep. 2008.
doi:10.1063/1.2980336

45. Duan, Zhaoyun, Xianfeng Tang, Zhanliang Wang, Yabin Zhang, Xiaodong Chen, Min Chen, and Yubin Gong, "Observation of the reversed Cherenkov radiation," Nature Communications, Vol. 8, No. 1, 14901, 2017.
doi:10.1038/ncomms14901

46. Ney, M., K. Yu. Sirenko, Yuriy Sirenko, H. O. Sliusarenko, and N. P. Yashina, "2-D photonic crystals: electromagnetic models of the method of exact absorbing conditions," Telecommunications and Radio Engineering, Vol. 76, No. 3, 185-207, 2017.
doi:10.1615/telecomradeng.v76.i3.10