Vol. 116
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2026-01-03
Design and Implementation of Metamaterial Inspired Reconfigurable Multiband Antenna for 5G/Sub 6 GHz NR and Wireless Applications
By
Progress In Electromagnetics Research B, Vol. 116, 107-124, 2026
Abstract
In this article, the authors propose the design and implementation of a frequency reconfigurable metamaterial-inspired octagon-shaped antenna for multiple wireless standards. The multiband functionality is achieved by incorporating a slotted self-similar octagonal radiating part with two SRR cells. The antenna design incorporates PIN diode switching elements on the slotted radiating patch, along with metamaterial-based SRR cell loading and a modified trapezoid-shaped partial ground plane, enabling its use across multiple wireless standards. The proposed design is resonating across five microwave frequency bands, including S-band WiMAX (3.5 GHz - IEEE 802.16e), 5G NR bands (n48: 3.55-3.70 GHz, n46: 5.15-5.925 GHz, n47: 5.855-5.925 GHz, n77: 3.3-4.2 GHz, n78: 3.3-3.8 GHz, n79: 4.4-5.0 GHz), C-band WLAN (5.0/5.8 GHz - IEEE 802.11a/ac), X-band (satellite communication, radar, terrestrial broadband, space communication), lower Ku-band for radar communication (13.43-14.55 GHz), upper Ku-band for molecular rotational spectroscopy (17.25-18.32 GHz), and lower K-band for astronomical observation services (18.81-19.96 GHz). The multiband antenna is then fabricated and tested, with measured and simulated results for return loss, gain, radiation efficiency, E-plane, and Hplane showing good agreement. The antenna's penta-band operation, compact size, stable radiation characteristics, and good impedance across the entire resonating band make it well-suited for various wireless applications.
Citation
Hareetaa Mallani, Archana Agrawal, and Ritesh Kumar Saraswat, "Design and Implementation of Metamaterial Inspired Reconfigurable Multiband Antenna for 5G/Sub 6 GHz NR and Wireless Applications," Progress In Electromagnetics Research B, Vol. 116, 107-124, 2026.
doi:10.2528/PIERB25081601
References

1. Elsheakh, Dalia Mohammed Nasha, H. Elsadek, E. Abdallah, Magdy F. Iskander, and Hadia El-Hennawy, "Reconfigurable single and multiband inset feed microstrip patch antenna for wireless communication devices," Progress In Electromagnetics Research C, Vol. 12, 191-201, 2010.
doi:10.2528/pierc10011503        Google Scholar

2. Bakariya, Pritam Singh, Santanu Dwari, Manas Sarkar, and Mrinal Kanti Mandal, "Proximity-coupled microstrip antenna for Bluetooth, WiMAX, and WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 755-758, 2015.
doi:10.1109/lawp.2014.2379611        Google Scholar

3. Wu, Rui-Zhi, Peng Wang, Qiang Zheng, and Rui-Peng Li, "Compact CPW-fed triple-band antenna for diversity applications," Electronics Letters, Vol. 51, No. 10, 735-736, 2015.
doi:10.1049/el.2015.0466        Google Scholar

4. Mehdipour, Aidin, Abdel-Razik Sebak, Christopher W. Trueman, and Tayeb A. Denidni, "Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 144-147, 2012.
doi:10.1109/lawp.2012.2185915        Google Scholar

5. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "A multiband slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 952-958, 2015.
doi:10.1109/tap.2015.2389219        Google Scholar

6. Saraswat, Ritesh Kumar and Mithilesh Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/pierb15090103        Google Scholar

7. Samsuzzaman, M., T. Islam, N. H. Abd Rahman, M. R. I. Faruque, and J. S. Mandeep, "Compact modified Swastika shape patch antenna for WLAN/WiMAX applications," International Journal of Antennas and Propagation, Vol. 2014, No. 1, 825697, 2014.
doi:10.1155/2014/825697        Google Scholar

8. Ali, Tanweer, Mohammad Muzammil Khaleeq, Sameena Pathan, and Rajashekhar C. Biradar, "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 79-85, 2018.
doi:10.1002/mop.30921        Google Scholar

9. Chaurasia, Praveen, Binod Kumar Kanaujia, Santanu Dwari, and Mukesh Kumar Khandelwal, "Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 99, 100-109, 2019.
doi:10.1016/j.aeue.2018.11.036        Google Scholar

10. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna for WiFi applications," Electronics Letters, Vol. 45, No. 22, 1104-1106, 2009.
doi:10.1049/el.2009.2107        Google Scholar

11. Xu, He-Xiu, Guang-Ming Wang, Yuan-Yuan Lv, Mei-Qing Qi, Xi Gao, and Shuo Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/pier12122409        Google Scholar

12. Alam, T., M. Samsuzzaman, M. R. I. Faruque, and M. T. Islam, "A metamaterial unit cell inspired antenna for mobile wireless applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 263-267, 2016.
doi:10.1002/mop.29543        Google Scholar

13. Daniel, R. Samson, R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 83, 88-94, 2018.
doi:10.1016/j.aeue.2017.08.030        Google Scholar

14. Rao, M. Venkateswara, B. T. P. Madhav, T. Anilkumar, and B. Prudhvi Nadh, "Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications," AEU --- International Journal of Electronics and Communications, Vol. 97, 229-241, 2018.
doi:10.1016/j.aeue.2018.10.018        Google Scholar

15. Anguera, Jaume, Carles Puente, Carmen Borja, and Jordi Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, Wiley, 2005.
doi:10.1002/0471654507.eme128        Google Scholar

16. Chen, Horng-Dean, Hui-Wen Yang, and Chow-Yen-Desmond Sim, "Single open-slot antenna for LTE/WWAN smartphone application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4278-4282, 2017.
doi:10.1109/tap.2017.2710228        Google Scholar

17. Lee, Sang Heun, Yohan Lim, Young Joong Yoon, Chang-Beom Hong, and Hyung-Il Kim, "Multiband folded slot antenna with reduced hand effect for handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 674-677, 2010.
doi:10.1109/lawp.2010.2058086        Google Scholar

18. Yuan, Bo, Yazi Cao, and Gaofeng Wang, "A miniaturized printed slot antenna for six-band operation of mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 854-857, 2011.
doi:10.1109/lawp.2011.2165313        Google Scholar

19. Sharma, Sameer Kumar, Jai Deep Mulchandani, Devvrat Gupta, and Raghvendra Kumar Chaudhary, "Triple-band metamaterial-inspired antenna using FDTD technique for WLAN/WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 8, 688-695, 2015.
doi:10.1002/mmce.20907        Google Scholar

20. Ali, Tanweer and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
doi:10.1002/mop.30454        Google Scholar

21. Kukreja, Jaspreet, Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary, "CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, e21123, 2017.
doi:10.1002/mmce.21123        Google Scholar

22. Saraswat, Ritesh K. and Mithilesh Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21824, 2019.
doi:10.1002/mmce.21824        Google Scholar

23. Ali, Tanweer, Mohammad Saadh Aw, and Rajashekhar C. Biradar, "A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 7, 826-834, 2018.
doi:10.1017/s1759078718000272        Google Scholar

24. Pandeeswari, Ramasamy and Singaravelu Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
doi:10.1002/mop.28602        Google Scholar

25. Arora, Chirag, Shyam Sundar Pattnaik, and Rudra Narayan Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015.
doi:10.2528/pierc15052501        Google Scholar

26. Rajeshkumar, V. and Singaravelu Raghavan, "SRR-based polygon ring penta-band fractal antenna for GSM/WLAN/WiMAX/ITU band applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1301-1305, 2015.
doi:10.1002/mop.29070        Google Scholar

27. Elavarasi, C. and T. Shanmuganantham, "Multiband SRR loaded Koch star fractal antenna," Alexandria Engineering Journal, Vol. 57, No. 3, 1549-1555, 2018.
doi:10.1016/j.aej.2017.04.001        Google Scholar

28. Ahmad, B. H. and H. Nornikman, "Fractal microstrip antenna with Minkowski island split ring resonator for broadband application," 2013 IEEE International RF and Microwave Conference (RFM), 214-218, Penang, Malaysia, 2013.
doi:10.1109/rfm.2013.6757252

29. Hu, Jian-Rong and Jiu-Sheng Li, "Compact microstrip antennas using CSRR structure ground plane," Microwave and Optical Technology Letters, Vol. 56, No. 1, 117-120, 2014.
doi:10.1002/mop.28023        Google Scholar

30. Rajkumar, Rengasamy and Kommuri Usha Kiran, "A metamaterial inspired compact open split ring resonator antenna for multiband operation," Wireless Personal Communications, Vol. 97, No. 1, 951-965, 2017.
doi:10.1007/s11277-017-4545-0        Google Scholar

31. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 1, 274-280, 2015.
doi:10.1016/j.aeue.2014.09.012        Google Scholar

32. Saraswat, Ritesh K. and Mithilesh Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21893, 2019.
doi:10.1002/mmce.21893        Google Scholar

33. Liu, Wen-Chung, Chao-Ming Wu, and Yang Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2457-2463, 2011.
doi:10.1109/tap.2011.2152315        Google Scholar

34. Saraswat, Ritesh Kumar and Mithilesh Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/pierb15112703        Google Scholar

35. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.

36. Saraswat, Ritesh Kumar and Mithilesh Kumar, "Implementation of metamaterial loading to miniaturized UWB dipole antenna for WLAN and WiMAX applications with tunability characteristics," IETE Journal of Research, Vol. 68, No. 3, 2022-2035, 2022.
doi:10.1080/03772063.2019.1684845        Google Scholar

37. Naqvi, Syed Aftab and Muhammad Saeed Khan, "Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands," Microwave and Optical Technology Letters, Vol. 60, No. 2, 325-330, 2018.
doi:10.1002/mop.30962        Google Scholar

38. Li, Weiwen, Yongcong Liu, Jie Li, Longfang Ye, and Qing Huo Liu, "Modal proportion analysis in antenna characteristic mode theory," International Journal of Antennas and Propagation, Vol. 2019, No. 1, 7069230, 2019.
doi:10.1155/2019/7069230        Google Scholar

39. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, Boston, MA, USA, 2001.

40. Computer simulation technology microwave studio (CST MWS), retrieved from http://www.cst.co.

41. Chen, Hongsheng, Jingjing Zhang, Yang Bai, Yu Luo, Lixin Ran, Qin Jiang, and Jin Au Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/oe.14.012944        Google Scholar

42. Saha, Chinmoy and Jawad Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 4, 432-438, 2011.
doi:10.1002/mmce.20533        Google Scholar

43. Smith, D. R., S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/physrevb.65.195104        Google Scholar

44. Agrawal, Archana, Pramod Kumar Singhal, and Ankit Jain, "Design and optimization of a microstrip patch antenna for increased bandwidth," International Journal of Microwave and Wireless Technologies, Vol. 5, No. 4, 529-535, 2013.
doi:10.1017/s1759078713000160        Google Scholar

45. Puri, Isha and Archana Agrawal, "Bandwidth and gain increment of microstrip patch antenna with shifted elliptical slot," International Journal of Engineering Science and Technology, Vol. 3, No. 7, 5539-5545, 2011.        Google Scholar

46. Maheshwari, S., P. Jain, and A. Agarwal, "CPW-fed wideband antenna with U-shaped ground plane," International Journal of Wireless and Microwave Technologies, Vol. 4, 25-31, 2014.
doi:10.5815/ijwmt.2014.05.03        Google Scholar

47. Saraswat, R. and M. Kumar, "Implementation of the metamaterial multiband frequency reconfigurable antenna for IoT wireless standards," IETE Journal of Research, Vol. 70, No. 5, 4594-4605, 2023.
doi:10.1080/03772063.2023.2234863        Google Scholar

48. Vaswani, J. and A. Agarwal, "A four port, dual band antenna for fifth generation mobile communication and WLAN services," ACTA TECHNICA CORVINIENSIS --- Bulletin of Engineering, Vol. 13, No. 4, 73-76, 2020.        Google Scholar

49. Agarwal, Archana, Manish Kumar, Priyanka Jain, and Shagun Maheshwari, "Tapered circular microstrip antenna with modified ground plane for UWB communications," International Journal of Electronics and Communication Engineering & Technology (IJECET), Vol. 4, No. 3, 43-47, 2013.        Google Scholar

50. Vaswani, Jitendra and Archana Agarwal, "Dual-band, dual-polarized two element slot antenna for fifth generation mobile devices," Turkish Journal of Computer and Mathematics Education (TURCOMAT), Vol. 12, No. 3, 4822-4830, 2021.
doi:10.17762/turcomat.v12i3.1986        Google Scholar

51. Vaswani, Jitendra and Archana Agarwal, "Twelve-port dual-polarized dual-band mimo antenna for fifth-generation mobile devices," ICTACT Journal on Communication Technology, Vol. 12, No. 3, 2490-2497, 2021.
doi:10.21917/ijct.2021.0368        Google Scholar

52. Saraswat, Ritesh Kumar and Mithilesh Kumar, "A quad band metamaterial miniaturized antenna for wireless applications with gain enhancement," Wireless Personal Communications, Vol. 114, No. 4, 3595-3612, 2020.
doi:10.1007/s11277-020-07548-z        Google Scholar

53. Bharti, Gurpreet and Jagtar Singh Sivia, "A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications," Progress In Electromagnetics Research C, Vol. 108, 115-125, 2021.
doi:10.2528/pierc20110601        Google Scholar

54. Kaur, Amandeep and Praveen K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
doi:10.2528/pierb20102704        Google Scholar

55. Mu, Weidong, Zhonggen Wang, Ming Yang, Wenyan Nie, and Pan Wang, "A six-port slot antenna system with wideband and high-isolation for 5G NR bands," Progress In Electromagnetics Research M, Vol. 107, 105-118, 2022.
doi:10.2528/pierm21112005        Google Scholar

56. Jiang, Jun-Yi and Hsin-Lung Su, "A wideband eight-element MIMO antenna array in 5G NR n77/78/79 and WLAN-5 GHz bands for 5G smartphone applications," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 8456936, 2022.
doi:10.1155/2022/8456936        Google Scholar

57. Murugan, Chinnathambi and Thandapani Kavitha, "A compact four-element modified annular ring antenna for 5G applications," Progress In Electromagnetics Research C, Vol. 137, 169-183, 2023.
doi:10.2528/pierc23062803        Google Scholar

58. Xue, Jincheng, Guolong Wang, Shuman Li, Zhuopeng Wang, and Quanquan Liang, "A metamaterial based dual-band UWB antenna design for 5G applications," Progress In Electromagnetics Research M, Vol. 127, 85-92, 2024.
doi:10.2528/pierm24042301        Google Scholar

59. Neeshu, K. and Anjini Kumar Tiwary, "A compact, high gain ring metamaterial unit cell loaded triple band antenna for 5G application," Progress In Electromagnetics Research M, Vol. 124, 99-106, 2024.
doi:10.2528/pierm23101305        Google Scholar

60. Mallani, Hareetaa, Archana Agrawal, and Ritesh K. Saraswat, "Implementation of fractal metamaterial inspired antenna for multi-standard wireless applications," Progress In Electromagnetics Research B, Vol. 108, 121-137, 2024.
doi:10.2528/pierb24072905        Google Scholar

61. Alpha Industries, ALPHA-6355 beamlead PIN diode, Data sheet (Online), Available: http://www.datasheetarchive.com/ALPHA/PINdiode6355-datasheet.html.

62. Abdollahvand, Mousa, Yashar Zehforoosh, Banafsheh Marufi, P. Esmailzadeh Kaleybar, and Aliakbar Dastranj, "A novel UWB in-body printed microstrip feed monopole antenna with dual band-stop capabilities," Microwave and Optical Technology Letters, Vol. 66, No. 9, e34317, 2024.
doi:10.1002/mop.34317        Google Scholar

63. Abdollahvand, Mousa, Bijan Abbasi Arand, Kanishka Katoch, and Saptarshi Ghosh, "A novel and compact ultra-wideband printed monopole antenna with enhanced bandwidth and dual-band stop properties," Microwave and Optical Technology Letters, Vol. 66, No. 1, e33990, 2023.
doi:10.1002/mop.33990        Google Scholar

64. Abdollahvand, M., H. R. Hassani, and G. R. Dadashzadeh, "Novel modified monopole antenna with band-notch characteristic for UWB application," IEICE Electronics Express, Vol. 7, No. 16, 1207-1213, 2010.
doi:10.1587/elex.7.1207        Google Scholar

65. Abdollahvand, Mousa, Keyvan Forooraghi, Jose A. Encinar, Zahra Atlasbaf, and Eduardo Martinez-de-Rioja, "Design and demonstration of a tri-band frequency selective surface for space applications in X, K, and Ka bands," Microwave and Optical Technology Letters, Vol. 62, No. 4, 1742-1751, 2020.
doi:10.1002/mop.32225        Google Scholar

66. Abdollahvand, M., G. R. Dadashzadeh, H. Ebrahimian, and M. Ojaroudi, "Compact ultra-wideband printed monopole antenna having frequency band-notch characteristic using defected ground structure," Microwave and Optical Technology Letters, Vol. 53, No. 10, 2363-2368, 2011.
doi:10.1002/mop.26280        Google Scholar