Vol. 116
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2025-10-30
Comprehensive Phase Shifter Review: State of the Art and Future Trends
By
Progress In Electromagnetics Research B, Vol. 116, 33-47, 2026
Abstract
RF signals are widely used in various applications, including radar systems, wireless communication systems, and telecommunications. Phase shifters allow tuning of the signal's phase, using digital and analog designs. This adjustment is essential for antenna beam steering and shaping, signal cancellation, and frequency synthesis in antenna arrays. Phase control is essential to improve the performance of wireless communication and radar systems by enhancing signal reception and transmission. This study examines different types of phase shifters, including a comparative analysis of different phase shifter topologies and technologies, highlighting advantages and limitations according to applications. In addition, this review includes a specific study on liquid metal phase shifters. Finally, the article outlines future research directions for liquid metal phase shifters: It is emphasized that there is a constant need for innovative design strategies to keep pace with the evolving wireless communications and radar fields. Therefore, this article can be a reference for the next milestones in RF phase shifter research.
Citation
Sana Gharsalli, Radhoine Aloui, Sofien Mhatli, Alonso Corona-Chavez, Zabdiel Brito-Brito, Satyendra Kumar Mishra, and Ignacio Llamas-Garro, "Comprehensive Phase Shifter Review: State of the Art and Future Trends," Progress In Electromagnetics Research B, Vol. 116, 33-47, 2026.
doi:10.2528/PIERB25082704
References

1. Lakshmaiah, Dayadi, L. Koteswara Rao, I. Satya Narayana, B. Rajeshwari, and I. Venu, "A novel feedforward offset cancellation limiting amplifier in radio frequencies," Cognitive Computing Models in Communication Systems, 189, 2022.
doi:10.1002/9781119865605.ch13

2. Lian, Ji-Wei, Yong-Ling Ban, He Zhu, and Y. Jay Guo, "Uniplanar beam-forming network employing eight-port hybrid couplers and crossovers for 2-D multibeam array antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4706-4718, 2020.
doi:10.1109/tmtt.2020.2992026

3. Li, Tso-Wei and Hua Wang, "A millimeter-wave fully integrated passive reflection-type phase shifter with transformer-based multi-resonance loads for 360° phase shifting," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 4, 1406-1419, 2018.
doi:10.1109/tcsi.2017.2748078

4. Qian, Huizhen Jenny, Bo Zhang, and Xun Luo, "High-resolution wideband phase shifter with current limited vector-sum," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, No. 2, 820-833, 2019.
doi:10.1109/tcsi.2018.2858017

5. Ouattara, David, "Conception de déphaseurs innovants pour des applications en bande millimétrique: 5G/6G et radars automobiles," Université Grenoble Alpes, France, 2023.

6. Kebe, M., M. C. E. Yagoub, and R. E. Amaya, "A survey of phase shifters for microwave phased array systems," International Journal of Circuit Theory and Applications, Vol. 53, No. 6, 3719-3739, 2025.
doi:10.1002/cta.4298

7. Sear, William P., "Techniques for simultaneous linearity and efficiency improvement in compound RF power amplifiers," Ph.D. dissertation, University of Colorado at Boulder, Colorado, USA, 2022.

8. Kim, Chanwoo, Jaemin Bae, Heeje Han, Soonwoo Park, and Hongjoon Kim, "Arbitrary waveform generator using a nonlinear transmission line harmonic generator and a phase shifter," 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 69-70, Incheon, Korea (South), 2019.
doi:10.1109/apcap47827.2019.9472087

9. Yu, Yikun, Peter G. M. Baltus, and Arthur H. M. Van Roermund, Integrated 60 GHz RF Beamforming in CMOS, Springer Science & Business Media, 2011.
doi:10.1007/978-94-007-0662-0

10. Thunberg, Hugo and Johan Olson, "Phase noise tracking: Circuit design and construction," Chalmers University of Technology, Gothenburg, Sweden, 2022.

11. Li, Xuguang, Haipeng Fu, Kaixue Ma, and Jianquan Hu, "A 2.4–4-GHz wideband 7-bit phase shifter with low RMS phase/amplitude error in 0.5-μm GaAs technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 2, 1292-1301, 2022.
doi:10.1109/tmtt.2021.3123053

12. Ohadi, Amirmasoud and George V. Eleftheriades, "A continuously tunable phase shifter using surface waves," IEEE Journal of Microwaves, Vol. 1, No. 4, 989-996, 2021.
doi:10.1109/jmw.2021.3102869

13. Wang, Dongwei, Ersin Polat, Christian Schuster, Henning Tesmer, Gustavo P. Rehder, Ariana L. C. Serrano, Leonardo G. Gomes, Philippe Ferrari, Holger Maune, and Rolf Jakoby, "Fast and miniaturized phase shifter with excellent figure of merit based on liquid crystal and nanowire-filled membrane technologies," IEEE Journal of Microwaves, Vol. 2, No. 1, 174-184, 2022.
doi:10.1109/jmw.2021.3131648

14. Li, Jinfeng and Haorong Li, "Liquid crystal-filled 60 GHz coaxially structured phase shifter design and simulation with enhanced figure of merit by novel permittivity-dependent impedance matching," Electronics, Vol. 13, No. 3, 626, 2024.
doi:10.3390/electronics13030626

15. Khan, M. Rashed, Gerard J. Hayes, Silu Zhang, Michael D. Dickey, and Gianluca Lazzi, "A pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 11, 577-579, 2012.
doi:10.1109/lmwc.2012.2223754

16. Li, J., "Structure and optimisation of liquid crystal based phase shifter for millimetre-wave applications," Ph.D. dissertation, University of Cambridge, Cambridge, Uk, 2019.
doi:10.17863/CAM.35704

17. Chu, Huy Nam and Tzyh-Ghuang Ma, "Beamwidth switchable planar microstrip series-fed slot array using reconfigurable synthesized transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3766-3771, 2017.
doi:10.1109/tap.2017.2700235

18. Alhamad, Razan, Eqab Almajali, and Soliman Mahmoud, "Electrical reconfigurability in modern 4G, 4G/5G and 5G antennas: A critical review of polarization and frequency reconfigurable designs," IEEE Access, Vol. 11, 29215-29233, 2023.
doi:10.1109/access.2023.3260073

19. Errifi, Hayat, Abdennaceur Baghdad, Abdelmajid Badri, and Aicha Sahel, "Electronically reconfigurable beam steering array antenna using switched line phase shifter," 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), 1-6, Rabat, Morocco, 2017.
doi:10.1109/wincom.2017.8238147

20. Huang, Yulin, Jingfu Bao, Xinyi Li, Yiling Wang, and Yijia Du, "A 4-bit switched-line phase shifter based on MEMS switches," 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 405-408, Xi'an, China, 2015.
doi:10.1109/nems.2015.7147454

21. Silva, C. P. N., G. J. Pinheiro, M. R. T. De Oliveira, E. M. F. De Oliveira, I. Llamas-Garro, and M. T. De Melo, "Reconfigurable frequency discriminator based on fractal delay line," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 3, 186-188, 2019.
doi:10.1109/lmwc.2019.2892293

22. De Oliveira, Elias M. F., Leon P. Pontes, Crislane P. N. da Silva, Marcos T. de Melo, Bruno G. M. de Oliveira, and Ignacio Llamas-Garro, "Microstrip fractal-based phase shifter: An UHF phase shifter based on with Hilbert's fractal delay lines," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 408-410, Nuremberg, Germany, 2017.
doi:10.23919/eumic.2017.8230745

23. Chakraborty, Amrita and Bhaskar Gupta, "Paradigm phase shift: RF MEMS phase shifters: An overview," IEEE Microwave Magazine, Vol. 18, No. 1, 22-41, 2017.
doi:10.1109/mmm.2016.2616155

24. Wang, Zhigang, Bo Yan, Rui-Min Xu, and Yunnchuan Guo, "Design of a Ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2007.
doi:10.2528/pier07071904

25. Han, Ying, Luyan Qiao, Xi-Bei Zhao, Le Xu, Pengfei Zhang, Rui Li, and Feng Wei, "A reconfigurable balanced loaded-line phase shifter based on slot line," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 12, e23418, 2022.
doi:10.1002/mmce.23418

26. Miyaguchi, K., M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki, "An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel LC circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2446-2452, 2001.
doi:10.1109/22.971634

27. Gong, Jianhao, Wangdong He, Anyong Hu, Jungang Miao, and Xi Chen, "Analysis and design of a X-band analog phase shifter for passive millimeter-wave imaging application," 2022 IEEE 4th International Conference on Circuits and Systems (ICCS), 235-239, Chengdu, China, 2022.
doi:10.1109/iccs56666.2022.9936197

28. Ebrahimi, Amir, Grzegorz Beziuk, Kamran Ghorbani, and Ferran Martín, "Tunable phase shifters using composite inductive-capacitive loaded slow-wave transmission lines," AEU --- International Journal of Electronics and Communications, Vol. 148, 154155, 2022.
doi:10.1016/j.aeue.2022.154155

29. Trinh, Kim Tuyen, Jiewei Feng, Shahriar Hasan Shehab, and Nemai Chandra Karmakar, "1.4 GHz low-cost pin diode phase shifter for L-band radiometer antenna," IEEE Access, Vol. 7, 95274-95284, 2019.
doi:10.1109/access.2019.2926140

30. Pan, Shilong, Xingwei Ye, Yamei Zhang, and Fangzheng Zhang, "Microwave photonic array radars," IEEE Journal of Microwaves, Vol. 1, No. 1, 176-190, 2021.
doi:10.1109/jmw.2020.3034583

31. Ghorbani, K., A. Mitchell, R. B. Waterhouse, and M. W. Austin, "A novel wide-band tunable RF phase shifter using a variable optical directional coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 5, 645-648, 1999.
doi:10.1109/22.763169

32. Komma, J., C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, "Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures," Applied Physics Letters, Vol. 101, No. 4, 041905, 2012.
doi:10.1063/1.4738989

33. Errando-Herranz, Carlos, Alain Yuji Takabayashi, Pierre Edinger, Hamed Sattari, Kristinn B. Gylfason, and Niels Quack, "MEMS for photonic integrated circuits," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 2, 1-16, 2020.
doi:10.1109/jstqe.2019.2943384

34. Taghavi, Iman, Maryam Moridsadat, Alexander Tofini, Shaheer Raza, Nicolas A. F. Jaeger, Lukas Chrostowski, Bhavin J. Shastri, and Sudip Shekhar, "Polymer modulators in silicon photonics: Review and projections," Nanophotonics, Vol. 11, No. 17, 3855-3871, 2022.
doi:10.1515/nanoph-2022-0141

35. Kim, Younghyun, Jae-Hoon Han, Daehwan Ahn, and Sanghyeon Kim, "Heterogeneously-integrated optical phase shifters for next-generation modulators and switches on a silicon photonics platform: A review," Micromachines, Vol. 12, No. 6, 625, 2021.
doi:10.3390/mi12060625

36. Chang, Tsun-Hsu, "Ferrite materials and applications," Electromagnetic Materials and Devices, 1-14, 2020.
doi:10.5772/intechopen.84623

37. Myrzakhan, Ulan, Farhan A. Ghaffar, Mohammad Vaseem, Hossein Fariborzi, and Atif Shamim, "Inkjet-printed ferrite substrate-based vialess waveguide phase shifter," IEEE Transactions on Magnetics, Vol. 59, No. 4, 1-12, 2023.
doi:10.1109/tmag.2023.3242088

38. Nafe, Ahmed and Atif Shamim, "An integrable SIW phase shifter in a partially magnetized ferrite LTCC package," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 7, 2264-2274, 2015.
doi:10.1109/tmtt.2015.2436921

39. Ellinger, F., H. Jackel, and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1135-1140, 2003.
doi:10.1109/tmtt.2003.809670

40. Tang, Junwen, Shenheng Xu, Fan Yang, and Maokun Li, "Design and measurement of a reconfigurable transmitarray antenna with compact varactor-based phase shifters," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1998-2002, 2021.
doi:10.1109/lawp.2021.3101891

41. Khodarahmi, Ehsan, Mohammad Elmi, Igor M. Filanovsky, and Kambiz Moez, "A 16.5-31 GHz area-efficient tapered tunable transmission line phase shifter," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 70, No. 4, 1517-1530, 2023.
doi:10.1109/tcsi.2023.3240681

42. Wang, Tengxing, Wei Jiang, Ralu Divan, Daniel Rosenmann, Leonidas E. Ocola, Yujia Peng, and Guoan Wang, "Novel electrically tunable microwave solenoid inductor and compact phase shifter utilizing permaloy and PZT thin films," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3569-3577, 2017.
doi:10.1109/tmtt.2017.2731765

43. Barker, N. S. and G. M. Rebeiz, "Optimization of distributed MEMS transmission-line phase shifters-U-band and W-band designs," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1957-1966, 2000.
doi:10.1109/22.883878

44. Ibrahim, Sarah Adel, Ziming Wang, and Ronan Farrell, "An MEMS phase shifter with high power handling for electronic beam tilt in base station antennas," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 269-271, 2017.
doi:10.1109/lmwc.2017.2664583

45. Valdes, Jehison Rafael Leon, "Antennes agiles reconfigurables optiquement dans le domaine millimétrique avec l'intégration de matériaux à changement de phase," Ph.D. dissertation, Université de Limoges, Français, 2020.

46. Ding, Can, Y. Jay Guo, Pei-Yuan Qin, Trevor S. Bird, and Yintang Yang, "A defected microstrip structure (DMS)-based phase shifter and its application to beamforming antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 641-651, 2014.
doi:10.1109/tap.2013.2290802

47. Alkaraki, Shaker, Quan Wei Lin, Fuad Erman, Syeda Fizzah Jilani, Zhengpeng Wang, Hang Wong, and James R. Kelly, "Liquid metal reconfigurable phased array antenna," 2024 18th European Conference on Antennas and Propagation (EuCAP), 1-5, Glasgow, United Kingdom, 2024.
doi:10.23919/eucap60739.2024.10500971

48. Tourissaud, Anaïs, "Conception d'un front-end avec amplificateur de puissance, VGA et déphaseur en technologie SiGe pour des applications 5G aux fréquences millimétriques," Ph.D. dissertation, Université de Bordeaux, Français, 2023.

49. Zhu, He and Amin M. Abbosh, "A compact tunable directional coupler with continuously tuned differential phase," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 19-21, 2018.
doi:10.1109/lmwc.2017.2779819

50. Dey, Sukomal and Shiban K. Koul, "Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3997-4012, 2015.
doi:10.1109/tmtt.2015.2491938

51. Burdin, Francois, Zyad Iskandar, Florence Podevin, and Philippe Ferrari, "Design of compact reflection-type phase shifters with high figure-of-merit," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 1883-1893, 2015.
doi:10.1109/tmtt.2015.2428242

52. Pontes, L. P., E. M. F. de Oliveira, C. P. N. Silva, A. G. Barboza, M. T. de Melo, and Ignacio Llamas-Garro, "Microstrip 3-bit fractal-based phase shifter," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 4, 598-604, 2022.
doi:10.1590/2179-10742022v21i4259521

53. Medina-Rull, Alberto, Francisco Pasadas, Enrique G. Marin, Alejandro Toral-Lopez, Juan Cuesta, Andres Godoy, David Jimélnez, and Francisco G. Ruiz, "A graphene field-effect transistor based analogue phase shifter for high-frequency applications," IEEE Access, Vol. 8, 209055-209063, 2020.
doi:10.1109/access.2020.3038153

54. Qiu, Lei-Lei, Lei Zhu, and Yun-Peng Lyu, "Balanced wideband phase shifters with wide phase shift range and good common-mode suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 8, 3403-3413, 2019.
doi:10.1109/tmtt.2019.2921771

55. Amin, Faisal, Yun Liu, Yongjiu Zhao, and Sanming Hu, "Compact and low-loss phase shifters and multibit phase shifters based on inverted-E topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 4, 2120-2129, 2021.
doi:10.1109/tmtt.2021.3061482

56. Amin, Faisal, Lingyun Liu, Yun Liu, and Yongjiu Zhao, "Compact single-unit two-bit reflection-type phase shifters with large phase shift range," Electronics, Vol. 12, No. 11, 2412, 2023.
doi:10.3390/electronics12112412

57. Wang, Dongwei, Ersin Polat, Henning Tesmer, Holger Maune, and Rolf Jakoby, "Switched and steered beam end-fire antenna array fed by wideband via-less butler matrix and tunable phase shifters based on liquid crystal technology," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5383-5392, 2022.
doi:10.1109/tap.2022.3142334

58. Ung, Benjamin S.-Y., Xudong Liu, Edward P. J. Parrott, Abhishek Kumar Srivastava, Hongkyu Park, Vladimir G. Chigrinov, and Emma Pickwell-MacPherson, "Towards a rapid terahertz liquid crystal phase shifter: Terahertz in-plane and terahertz out-plane (TIP-TOP) switching," IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 2, 209-214, 2018.
doi:10.1109/tthz.2018.2790708

59. Mendoza, Jonas J. Mendoza, "MM-wave reconfigurable antenna arrays, phase shifters and beamforming networks with reduced hardware complexity using integrated microfluidic actuation," Ph.D. dissertation, University of South Florida, USA, 2022.

60. Wu, Yi-Wen, Shaker Alkaraki, Shi-Yang Tang, Yi Wang, and James R. Kelly, "Circuits and antennas incorporating gallium-based liquid metal," Proceedings of the IEEE, Vol. 111, No. 8, 955-977, 2023.
doi:10.1109/jproc.2023.3285400

61. Song, Lingnan, Wuran Gao, Chi On Chui, and Yahya Rahmat-Samii, "Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluidics," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 2886-2895, 2019.
doi:10.1109/tap.2019.2902651

62. Henry, Dominique, Ahmad El Sayed Ahmad, Ali Hadj Djilani, Patrick Pons, and Hervé Aubert, "Wireless reading and localization of additively manufactured Galinstan-based sensor using a polarimetric millimeter-wave radar imaging technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 3-16, 2024.
doi:10.1109/tmtt.2023.3294549

63. Hensley, David M., "A reconfigurable stretchable liquid metal antenna, phase shifter, and array for wideband applications," Ph.D. dissertation, The University of New Mexico, USA, 2021.

64. Karcher, Ch., V. Kocourek, and D. Schulze, "Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop," International Scientific Colloquium, Modelling for Electromagnetic Processing, 105-110, Hannover, Germany, 2003.

65. Hammond, C. R., "Properties of the elements and inorganic compounds," CRC Handbook of Chemistry and Physics, 2005.

66. Dickey, Michael D., Ryan C. Chiechi, Ryan J. Larsen, Emily A. Weiss, David A. Weitz, and George M. Whitesides, "Eutectic gallium‐indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature," Advanced Functional Materials, Vol. 18, No. 7, 1097-1104, 2008.
doi:10.1002/adfm.200701216

67. Dickey, Michael D., "Emerging applications of liquid metals featuring surface oxides," ACS Applied Materials & Interfaces, Vol. 6, No. 21, 18369-18379, 2014.
doi:10.1021/am5043017

68. Koster, J. N., "Directional solidification and melting of eutectic GaIn," Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, Vol. 34, No. 9, 1129-1140, 1999.
doi:10.1002/(sici)1521-4079(199911)34:9<1129::aid-crat1129>3.0.co;2-p

69. Yu, Seungho and Massoud Kaviany, "Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles," The Journal of Chemical Physics, Vol. 140, No. 6, 064303, 2014.
doi:10.1063/1.4865105

70. Liu, Tingyi, Prosenjit Sen, and Chang-Jin Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices," Journal of Microelectromechanical Systems, Vol. 21, No. 2, 443-450, 2012.
doi:10.1109/jmems.2011.2174421

71. Alkaraki, Shaker, Quan Wei Lin, Alejandro L. Borja, Zhengpeng Wang, Hang Wong, Shiyang Tang, Yi Wang, and James R. Kelly, "10-GHz low-loss liquid metal SIW phase shifter for phased array antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 11, 5045-5059, 2023.
doi:10.1109/tmtt.2023.3308160

72. Alkaraki, Shaker, Quan-Wei Lin, James R. Kelly, Zhengpeng Wang, and Hang Wong, "Phased array antenna system enabled by liquid metal phase shifters," IEEE Access, Vol. 11, 96987-97000, 2023.
doi:10.1109/access.2023.3308068

73. Hensley, David M., Christos G. Christodoulou, and Nathan Jackson, "A stretchable liquid metal coaxial phase shifter," IEEE Open Journal of Antennas and Propagation, Vol. 2, 370-374, 2021.
doi:10.1109/ojap.2021.3063289

74. Alkaraki, Shaker, Alejandro L. Borja, James R. Kelly, Raj Mittra, and Yue Gao, "Reconfigurable liquid metal-based SIW phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 323-333, 2022.
doi:10.1109/tmtt.2021.3124797

75. Sazegar, Mohsen, Yuliang Zheng, Holger Maune, Christian Damm, Xianghui Zhou, and Rolf Jakoby, "Compact tunable phase shifters on screen-printed BST for balanced phased arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3331-3337, 2011.
doi:10.1109/tmtt.2011.2171985

76. Kagita, Srujana, Ananjan Basu, and Shiban K. Koul, "Characterization of ltcc-based ferrite tape in X-band and its application to electrically tunable phase shifter and notch filter," IEEE Transactions on Magnetics, Vol. 53, No. 1, 1-8, 2017.
doi:10.1109/tmag.2016.2605078

77. Wang, Dongwei, Ersin Polat, Henning Tesmer, Rolf Jakoby, and Holger Maune, "Highly miniaturized continuously tunable phase shifter based on liquid crystal and defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 6, 519-522, 2022.
doi:10.1109/lmwc.2022.3142410

78. Ding, Chang, Fan-Yi Meng, Jian-Qiao Han, Hui-Lin Mu, Qing-Yuan Fang, and Qun Wu, "Design of filtering tunable liquid crystal phase shifter based on spoof surface plasmon polaritons in PCB technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 12, 2418-2426, 2019.
doi:10.1109/tcpmt.2019.2943149

79. Panahi, Mohammad Ali, Lap Yeung, Maziar Hedayati, and Yuanxun Ethan Wang, "Sub-6 GHz high FOM liquid crystal phase shifter for phased array antenna," IEEE Journal of Microwaves, Vol. 2, No. 2, 316-325, 2022.
doi:10.1109/jmw.2022.3152208

80. Luo, Weijun, Hui Liu, Zongjing Zhang, Pengpeng Sun, and Xinyu Liu, "High-power X-band 5-b GaN phase shifter with monolithic integrated E/D HEMTs control logic," IEEE Transactions on Electron Devices, Vol. 64, No. 9, 3627-3633, 2017.
doi:10.1109/ted.2017.2727141

81. Cetindogan, Barbaros, Emre Ozeren, Berktug Ustundag, Mehmet Kaynak, and Yasar Gurbuz, "A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 64-66, 2016.
doi:10.1109/lmwc.2015.2505618

82. Sim, Sanghoon, Laurence Jeon, and Jeong-Geun Kim, "A compact X-band bi-directional phased-array T/R chipset in 0.13 μm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 562-569, 2013.
doi:10.1109/TMTT.2012.2227786

83. Burak, Abdurrahman, Can Çalışkan, Melik Yazici, and Yasar Gurbuz, "X-band 6-bit SiGe BiCMOS multifunctional chip with +12 dBm IP1dB and flat-gain response," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 1, 126-130, 2021.
doi:10.1109/tcsii.2020.3008769

84. Sorianello, V., M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, "Graphene-silicon phase modulators with gigahertz bandwidth," Nature Photonics, Vol. 12, No. 1, 40-44, 2018.
doi:10.1038/s41566-017-0071-6

85. Capmany, J., D. Domenech, and P. Muñoz, "Silicon graphene reconfigurable CROWS and SCISSORS," IEEE Photonics Journal, Vol. 7, No. 2, 1-9, 2015.
doi:10.1109/jphot.2015.2407314

86. Sorianello, Vito, Michele Midrio, and Marco Romagnoli, "Design optimization of single and double layer Graphene phase modulators in SOI," Optics Express, Vol. 23, No. 5, 6478-6490, 2015.
doi:10.1364/oe.23.006478

87. Brunetti, Giuseppe, Nicola Sasanelli, Mario N. Armenise, and Caterina Ciminelli, "High performance and tunable optical pump-rejection filter for quantum photonic systems," Optics & Laser Technology, Vol. 139, 106978, 2021.
doi:10.1016/j.optlastec.2021.106978

88. Brunetti, Giuseppe, Donato Conteduca, Francesco Dell’Olio, Caterina Ciminelli, and Mario N. Armenise, "Design of an ultra-compact graphene-based integrated microphotonic tunable delay line," Optics Express, Vol. 26, No. 4, 4593-4604, 2018.
doi:10.1364/oe.26.004593

89. Pérez, Daniel, Ivana Gasulla, Lee Crudgington, David J. Thomson, Ali Z. Khokhar, Ke Li, Wei Cao, Goran Z. Mashanovich, and José Capmany, "Multipurpose silicon photonics signal processor core," Nature Communications, Vol. 8, No. 1, 636, 2017.
doi:10.1038/s41467-017-00714-1

90. Ren, Zhihao, Zixuan Zhang, Jingxuan Wei, Bowei Dong, and Chengkuo Lee, "Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy," Nature Communications, Vol. 13, No. 1, 3859, 2022.
doi:10.1038/s41467-022-31520-z

91. Kim, Se-Ho, Leigh T. Stephenson, Alisson K. da Silva, Baptiste Gault, and Ayman A. El-Zoka, "Phase separation and anomalous shape transformation in frozen microscale eutectic indium-gallium upon remelting," Materialia, Vol. 26, 101595, 2022.
doi:10.1016/j.mtla.2022.101595

92. Kataria, Tejinder Kaur, Leider Osorio, Jose Luis Olvera Cervantes, Jose Roberto Reyes-Ayona, and Alonso Corona-Chavez, "Microfluidic reconfigurable filter based on ring resonators," Progress In Electromagnetics Research Letters, Vol. 79, 59-63, 2018.
doi:10.2528/pierl18080402

93. Peñaloza-Delgado, Rosario, Tejinder Kaur Kataria, José Roberto Reyes-Ayona, José Luis Olvera-Cervantes, and Alonso Corona-Chávez, "A reconfigurable high Q epsilon near zero tunnel for material characterization," Journal of Microwave Power and Electromagnetic Energy, Vol. 52, No. 4, 266-275, 2018.
doi:10.1080/08327823.2018.1534053

94. Ansari, Farwa, Rana Asif Rehman, and Ahmad Arsalan, "Reduced network forwarding with controller enabled named software defined internet of mobile things," Ad Hoc Networks, Vol. 149, No. 3, 103235, 2023.
doi:10.1016/j.adhoc.2023.103235

95. Vallappil, Arshad Karimbu, Mohamad Kamal A. Rahim, Bilal A. Khawaja, Noor Asniza Murad, and Mohammed Gajibo Mustapha, "Butler matrix based beamforming networks for phased array antenna systems: A comprehensive review and future directions for 5G applications," IEEE Access, Vol. 9, 3970-3987, 2020.
doi:10.1109/access.2020.3047696

96. Kang, Dong-Woo and Songcheol Hong, "A 4-bit CMOS phase shifter using distributed active switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 7, 1476-1483, 2007.
doi:10.1109/tmtt.2007.900317

97. Ghosh, Saptarshi and Sungjoon Lim, "A multifunctional reconfigurable frequency-selective surface using liquid-metal alloy," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4953-4957, 2018.
doi:10.1109/tap.2018.2851455

98. Liang, Jing Cheng, Lei Zhang, Zhangjie Luo, Rui Zhe Jiang, Zhang Wen Cheng, Si Ran Wang, Meng Ke Sun, Shi Jin, Qiang Cheng, and Tie Jun Cui, "A filtering reconfigurable intelligent surface for interference-free wireless communications," Nature Communications, Vol. 15, No. 1, 3838, 2024.
doi:10.1038/s41467-024-47865-6

99. Sun, Haoyang, Qifeng Qiao, Qingze Guan, and Guangya Zhou, "Silicon photonic phase shifters and their applications: A review," Micromachines, Vol. 13, No. 9, 1509, 2022.
doi:10.3390/mi13091509

100. Malczewski, A., S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, "X-band RF MEMS phase shifters for phased array applications," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 12, 517-519, 1999.
doi:10.1109/75.819417

101. Salamin, Yannick, "Integrated plasmonic detectors and mixers for microwave and terahertz applications," Doctoral Thesis, ETH Zürich Series in Electromagnetic Fields, ETH Zurich, 2019.