1. Tonks, Lewi and Irving Langmuir, "Oscillations in ionized gases," Physical Review, Vol. 33, No. 2, 195, 1929.
doi:10.1103/physrev.33.195 Google Scholar
2. Petrin, A. B., "Transmission of microwaves through magnetoactive plasma," IEEE Transactions on Plasma Science, Vol. 29, No. 3, 471-478, 2001.
doi:10.1109/27.928945 Google Scholar
3. Kumar, Rajneesh and Dhiraj Bora, "Wireless communication capability of a reconfigurable plasma antenna," Journal of Applied Physics, Vol. 109, No. 6, 063303, Mar. 2011.
doi:10.1063/1.3564937 Google Scholar
4. Zhao, Jiansen, Yuli Chen, Yang Sun, Huafeng Wu, Yue Liu, and Qiumeng Yuan, "Plasma antennas driven by 5–20 kHz AC power supply," AIP Advances, Vol. 5, No. 12, 127114, Dec. 2015.
doi:10.1063/1.4938084 Google Scholar
5. Naito, T., S. Yamaura, Y. Fukuma, and O. Sakai, "Radiation characteristics of input power from surface wave sustained plasma antenna," Physics of Plasmas, Vol. 23, No. 9, 093504, Sep. 2016.
doi:10.1063/1.4962225 Google Scholar
6. Sadeghikia, F., A. Karami Horestani, M. Talafi Noghani, M. R. Dorbin, H. Mahdikia, and H. Ja'afar, "A study on the effect of the radius of a cylindrical plasma antenna on its radiation efficiency," International Journal of Engineering and Technology, Vol. 7, 204-206, 2018. Google Scholar
7. Ye, Huan Qing, Min Gao, and Chang Jian Tang, "Radiation theory of the plasma antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1497-1502, 2011.
doi:10.1109/tap.2011.2123051 Google Scholar
8. Alexeff, Igor, Ted Anderson, Esmaeil Farshi, Naresh Karnam, and Nanditha Reddy Pulasani, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, No. 5, 057104, 2008.
doi:10.1063/1.2919157 Google Scholar
9. Jusoh, Mohd Taufik, Olivier Lafond, Franck Colombel, and Mohamed Himdi, "Performance and radiation patterns of a reconfigurable plasma corner-reflector antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1137-1140, 2013.
doi:10.1109/lawp.2013.2281221 Google Scholar
10. Melazzi, Davide, Paola De Carlo, Fabio Trezzolani, Marco Manente, Antonio-Daniele Capobianco, and Stefano Boscolo, "Beam-forming capabilities of a plasma circular reflector antenna," IET Microwaves, Antennas & Propagation, Vol. 12, No. 15, 2301-2306, Dec. 2018.
doi:10.1049/iet-map.2018.5178 Google Scholar
11. Sadeghikia, Fatemeh, Mahsa Valipour, Mahmoud Talafi Noghani, Hajar Ja’afar, and Ali Karami Horestani, "3D beam steering end-fire helical antenna with beamwidth control using plasma reflectors," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2507-2512, May 2021.
doi:10.1109/tap.2020.3031473 Google Scholar
12. Wang, Hailu, Xingbao Lyu, Jingfeng Yao, Aleksandr M. Astafiev, and He-Ping Li, "Study of the radiation pattern and frequency response of a short linear antenna surrounded by discharge tubes for the development of rapidly adjustable wideband antenna systems," Electronics, Vol. 12, No. 6, 1277, Mar. 2023.
doi:10.3390/electronics12061277 Google Scholar
13. Yuan, Jin, Tigang Ning, Hiasu Li, Li Pei, Jing Li, Jingjing Zheng, and Lei Wan, "Terahertz filters based on subwavelength polymer waveguide," Results in Physics, Vol. 13, 102198, Jun. 2019.
doi:10.1016/j.rinp.2019.102198 Google Scholar
14. Luo, Siqi, John E. Scharer, Magesh Thiyagarajan, and C. Mark Denning, "Experimental study of laser-initiated radiofrequency-sustained high-pressure plasmas," IEEE Transactions on Plasma Science, Vol. 34, No. 6, 2637-2651, 2006.
doi:10.1109/tps.2006.885096 Google Scholar
15. Conrads, H. and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science and Technology, Vol. 9, No. 4, 441, 2000.
doi:10.1088/0963-0252/9/4/301 Google Scholar
16. Moisan, M., A. Shivarova, and A. W. Trivelpiece, "Experimental investigations of the propagation of surface waves along a plasma column," Plasma Physics, Vol. 24, No. 11, 1331, 1982.
doi:10.1088/0032-1028/24/11/001 Google Scholar
17. Vollmer, Michael and Klaus-Peter Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications, John Wiley & Sons, 2018.
doi:10.1088/0143-0807/34/6/S49
18. Chang, Chien-Wei, Mohammad Davoudabadi, and Farzad Mashayek, "One-dimensional fluid model of methane plasma for diamond-like coating," IEEE Transactions on Plasma Science, Vol. 38, No. 7, 1603-1614, Jul. 2010.
doi:10.1109/tps.2010.2049750 Google Scholar
19. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 392-400, 1997.
doi:10.1109/8.558654 Google Scholar
20. Yuan, Cheng-Xun, Zhong-Xiang Zhou, Jingwen W. Zhang, Xiao-Li Xiang, Feng Yue, and Hong-Guo Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, Jul. 2011.
doi:10.1109/tps.2011.2151207 Google Scholar
21. Zhang, Yang, Yanming Liu, and Xiaoping Li, "A 2-D FDTD model for analysis of plane wave propagation through the reentry plasma sheath," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5940-5948, Nov. 2017.
doi:10.1109/tap.2017.2748231 Google Scholar
22. Chen, Wei, Lixin Guo, Jiangting Li, and Songhua Liu, "Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3235-3242, Dec. 2016.
doi:10.1109/tps.2016.2617680 Google Scholar
23. Yuan, C. X., Z. X. Zhou, and H. G. Sun, "Reflection properties of electromagnetic wave in a bounded plasma slab," IEEE Transactions on Plasma Science, Vol. 38, No. 12, 3348-3355, Dec. 2010.
doi:10.1109/tps.2010.2084110 Google Scholar
24. Hu, Bin Jie, Gang Wei, and Sheng Li Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1136, 1999.
doi:10.1109/27.782293 Google Scholar
25. Yang, Min, Xiaoping Li, Bowen Bai, Ze Li, and Bosheng Xue, "Transmission coefficient estimation based on antenna voltage standing wave ratio under plasma sheath," AIP Advances, Vol. 8, No. 7, 075018, Jul. 2018.
doi:10.1063/1.5038763 Google Scholar
26. Liu, Jian-Xiao, Wan-Chun Tang, Yan Jiang, Lu Ju, and Hong-Wei Yang, "A study of frequency selection characteristics of negative conductivity in high temperature plasma," Results in Physics, Vol. 14, 102467, 2019.
doi:10.1016/j.rinp.2019.102467 Google Scholar
27. Fu, Guangyang, Shenjie Zhou, and Lu Qi, "On the strain gradient elasticity theory for isotropic materials," International Journal of Engineering Science, Vol. 154, 103348, 2020.
doi:10.1016/j.ijengsci.2020.103348 Google Scholar
28. Fu, Guangyang, Zhenjie Zhang, Chunmei Dong, Yanfei Sun, Jianjun Wang, and Hongyu Zheng, "On the magneto-mechanical response of piezomagnetic microbeam with size effects," Thin-Walled Structures, Vol. 191, 111040, 2023.
doi:10.1016/j.tws.2023.111040 Google Scholar
29. Fu, Guangyang, Kaikai Jin, Wenjian Song, Shenjie Zhou, and Hongyu Zheng, "On the non-classical transfer matrix method for free vibration behaviour of multi-rigid-elastic unit microsystem," Applied Mathematical Modelling, Vol. 151, 116407, 2026.
doi:10.1016/j.apm.2025.116407 Google Scholar
30. Lieberman, Michael A. and Allan J. Lichtenberg, "Principles of plasma discharges and materials processing," MRS Bulletin, Vol. 30, No. 11, 899-901, 2005.
doi:10.1557/mrs2005.242 Google Scholar
31. Colonna, Gianpiero and Antonio D’Angola, Plasma Modeling: Methods and Applications, IOP Publishing, 2022.
doi:10.1088/978-0-7503-3559-1
32. Chung, T. H., H. S. Yoon, and J. K. Lee, "Scaling laws verification for capacitive rf‐discharge Ar plasma using particle‐in‐cell simulations," Journal of Applied Physics, Vol. 78, No. 11, 6441-6447, 1995.
doi:10.1063/1.360527 Google Scholar
33. Kim, H.-Y., D.-C. Kwon, N.-S. Yoon, H.-H. Choe, and J.-H. Kim, "Development of new method for fluid simulation of capacitivelycoupled plasma discharge," Journal of the Korean Physical Society, Vol. 49, No. 51, 1967-1971, 2006. Google Scholar
34. Kortshagen, U. and B. G. Heil, "Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach," IEEE Transactions on Plasma Science, Vol. 27, No. 5, 1297-1309, 1999.
doi:10.1109/27.799806 Google Scholar
35. Gudmundsson, J. T. and M. A. Lieberman, "Magnetic induction and plasma impedance in a cylindrical inductive discharge," Plasma Sources Science and Technology, Vol. 6, No. 4, 540, 1997.
doi:10.1088/0963-0252/6/4/012 Google Scholar
36. Boltzmann Solver for the SIGLO Series 1.0 ~CPA Toulouse Kinema Software, 1996.
37. El jaouhari, Ayoub, Majid Rochdi, and Morad El Kaouini, "Effect of discharge parameters on conductive behavior and characteristics of monopole plasma antenna," Materials Today: Proceedings, Vol. 72, 3863-3868, 2023.
doi:10.1016/j.matpr.2022.10.072 Google Scholar
38. Lymberopoulos, Dimitris P. and Demetre J. Economou, "Fluid simulations of glow discharges: Effect of metastable atoms in argon," Journal of Applied Physics, Vol. 73, No. 8, 3668-3679, 1993.
doi:10.1063/1.352926 Google Scholar
39. COMSOL Multiphysics® v6.2.
40. Tonks, Lewi Oscillations in ionized gases, 122-139 Elsevier, 1961.
doi:10.1016/b978-1-4831-9913-9.50014-5
41. Huray, Paul G., Maxwell's Equations, John Wiley & Sons, 2009.
doi:10.1002/9780470549919
42. Haas, F. A., A. Goodyear, and N. S. J. Braithwaite, "Tailoring of electron energy distributions in low temperature plasmas," Plasma Sources Science and Technology, Vol. 7, No. 4, 471, 1998.
doi:10.1088/0963-0252/7/4/005 Google Scholar
43. Wang, Ying, Chengxun Yuan, Zhongxiang Zhou, Lei Li, and Yanwei Du, "Propagation of Gaussian laser beam in cold plasma of Drude model," Physics of Plasmas, Vol. 18, No. 11, 113105, 2011.
doi:10.1063/1.3662433 Google Scholar
44. CST Microwave Studio®, CST Studio Suite 2024.
45. Bogdanov, E. N., M. V. Zhernokletov, G. A. Kozlov, and A. V. Rodionov, "Study of shock-compressed argon plasma using microwave diagnostics," Combustion, Explosion, and Shock Waves, Vol. 56, No. 4, 479-485, 2020.
doi:10.1134/s0010508220040127 Google Scholar
46. Reinholz, H., Yu. Zaporoghets, V. Mintsev, V. Fortov, I. Morozov, and G. Röpke, "Frequency-dependent reflectivity of shock-compressed xenon plasmas," Physical Review E, Vol. 68, No. 3, 036403, 2003.
doi:10.1103/physreve.68.036403 Google Scholar
47. Bethke, George W. and Allen D. Ruess, "Microwave reflection from shock-produced plasmas," Physics of Fluids, Vol. 7, No. 9, 1446-1455, 1964.
doi:10.1063/1.1711398 Google Scholar
48. Yuan, Chengxun, Zhongxiang Zhou, Xiaoli Xiang, Hongguo Sun, He Wang, Mengda Xing, and Zhengjun Luo, "Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, No. 1, 23-29, 2011.
doi:10.1016/j.nimb.2010.10.003 Google Scholar
49. Twiss, R. Q., "Radiation transfer and the possibility of negative absorption in radio astronomy," Australian Journal of Physics, Vol. 11, No. 4, 564-579, 1958.
doi:10.1071/ph580564 Google Scholar
50. Kruer, William, The Physics of Laser Plasma Interactions, CRC Press, 2019.
doi:10.1201/9781003003243