Vol. 116
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2026-01-10
Frequency-Dependent Electromagnetic Response of Argon, Krypton, and Xenon Plasmas: A Theoretical and Simulation Study
By
Progress In Electromagnetics Research B, Vol. 116, 125-137, 2026
Abstract
In this paper, the frequency-dependent electromagnetic response of argon, krypton, and xenon plasmas is investigated using a fluid approach, the Drude model and the Transfer Matrix Method (TMM). The key plasma properties, electron density, collision frequency and plasma frequency, of a Capacitively Coupled Plasma (CCP) were obtained using a drift-diffusion fluid model within the COMSOL Multiphysics. These properties were then used to predict how the plasma would react to electromagnetic waves in the 0 to 200 gigahertz band. The obtained results demonstrate that the reflective and transmissive characteristics of each gas depend on its plasma frequency. Argon acts as an efficient reflector below 20 GHz and becomes highly transparent above 30 GHz. In contrast, Krypton maintains strong reflection up to 85 GHz, while xenon remains reflective up to 140 GHz before it becomes transmissive. The observed differences are caused by the variations in each gas's plasma frequency and electron-neutral collision rates. The TMM results show excellent agreement with Finite-Difference Time-Domain (FDTD) simulations. The comparison between the two methods demonstrates that TMM is a faster and equally accurate approach for wideband electromagnetic analysis and for the design of adaptive plasma-based frequency-selective devices, including plasma antennas, plasma reflectors and intelligent reflective surfaces (IRS).
Citation
Ayoub El Jaouhari, Abdelhak Missaoui, Moussa El Yahyaoui, Majid Rochdi, and Morad El Kaouini, "Frequency-Dependent Electromagnetic Response of Argon, Krypton, and Xenon Plasmas: A Theoretical and Simulation Study," Progress In Electromagnetics Research B, Vol. 116, 125-137, 2026.
doi:10.2528/PIERB25092907
References

1. Tonks, Lewi and Irving Langmuir, "Oscillations in ionized gases," Physical Review, Vol. 33, No. 2, 195, 1929.
doi:10.1103/physrev.33.195        Google Scholar

2. Petrin, A. B., "Transmission of microwaves through magnetoactive plasma," IEEE Transactions on Plasma Science, Vol. 29, No. 3, 471-478, 2001.
doi:10.1109/27.928945        Google Scholar

3. Kumar, Rajneesh and Dhiraj Bora, "Wireless communication capability of a reconfigurable plasma antenna," Journal of Applied Physics, Vol. 109, No. 6, 063303, Mar. 2011.
doi:10.1063/1.3564937        Google Scholar

4. Zhao, Jiansen, Yuli Chen, Yang Sun, Huafeng Wu, Yue Liu, and Qiumeng Yuan, "Plasma antennas driven by 5–20 kHz AC power supply," AIP Advances, Vol. 5, No. 12, 127114, Dec. 2015.
doi:10.1063/1.4938084        Google Scholar

5. Naito, T., S. Yamaura, Y. Fukuma, and O. Sakai, "Radiation characteristics of input power from surface wave sustained plasma antenna," Physics of Plasmas, Vol. 23, No. 9, 093504, Sep. 2016.
doi:10.1063/1.4962225        Google Scholar

6. Sadeghikia, F., A. Karami Horestani, M. Talafi Noghani, M. R. Dorbin, H. Mahdikia, and H. Ja'afar, "A study on the effect of the radius of a cylindrical plasma antenna on its radiation efficiency," International Journal of Engineering and Technology, Vol. 7, 204-206, 2018.        Google Scholar

7. Ye, Huan Qing, Min Gao, and Chang Jian Tang, "Radiation theory of the plasma antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1497-1502, 2011.
doi:10.1109/tap.2011.2123051        Google Scholar

8. Alexeff, Igor, Ted Anderson, Esmaeil Farshi, Naresh Karnam, and Nanditha Reddy Pulasani, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, No. 5, 057104, 2008.
doi:10.1063/1.2919157        Google Scholar

9. Jusoh, Mohd Taufik, Olivier Lafond, Franck Colombel, and Mohamed Himdi, "Performance and radiation patterns of a reconfigurable plasma corner-reflector antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1137-1140, 2013.
doi:10.1109/lawp.2013.2281221        Google Scholar

10. Melazzi, Davide, Paola De Carlo, Fabio Trezzolani, Marco Manente, Antonio-Daniele Capobianco, and Stefano Boscolo, "Beam-forming capabilities of a plasma circular reflector antenna," IET Microwaves, Antennas & Propagation, Vol. 12, No. 15, 2301-2306, Dec. 2018.
doi:10.1049/iet-map.2018.5178        Google Scholar

11. Sadeghikia, Fatemeh, Mahsa Valipour, Mahmoud Talafi Noghani, Hajar Ja’afar, and Ali Karami Horestani, "3D beam steering end-fire helical antenna with beamwidth control using plasma reflectors," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2507-2512, May 2021.
doi:10.1109/tap.2020.3031473        Google Scholar

12. Wang, Hailu, Xingbao Lyu, Jingfeng Yao, Aleksandr M. Astafiev, and He-Ping Li, "Study of the radiation pattern and frequency response of a short linear antenna surrounded by discharge tubes for the development of rapidly adjustable wideband antenna systems," Electronics, Vol. 12, No. 6, 1277, Mar. 2023.
doi:10.3390/electronics12061277        Google Scholar

13. Yuan, Jin, Tigang Ning, Hiasu Li, Li Pei, Jing Li, Jingjing Zheng, and Lei Wan, "Terahertz filters based on subwavelength polymer waveguide," Results in Physics, Vol. 13, 102198, Jun. 2019.
doi:10.1016/j.rinp.2019.102198        Google Scholar

14. Luo, Siqi, John E. Scharer, Magesh Thiyagarajan, and C. Mark Denning, "Experimental study of laser-initiated radiofrequency-sustained high-pressure plasmas," IEEE Transactions on Plasma Science, Vol. 34, No. 6, 2637-2651, 2006.
doi:10.1109/tps.2006.885096        Google Scholar

15. Conrads, H. and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science and Technology, Vol. 9, No. 4, 441, 2000.
doi:10.1088/0963-0252/9/4/301        Google Scholar

16. Moisan, M., A. Shivarova, and A. W. Trivelpiece, "Experimental investigations of the propagation of surface waves along a plasma column," Plasma Physics, Vol. 24, No. 11, 1331, 1982.
doi:10.1088/0032-1028/24/11/001        Google Scholar

17. Vollmer, Michael and Klaus-Peter Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications, John Wiley & Sons, 2018.
doi:10.1088/0143-0807/34/6/S49

18. Chang, Chien-Wei, Mohammad Davoudabadi, and Farzad Mashayek, "One-dimensional fluid model of methane plasma for diamond-like coating," IEEE Transactions on Plasma Science, Vol. 38, No. 7, 1603-1614, Jul. 2010.
doi:10.1109/tps.2010.2049750        Google Scholar

19. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 392-400, 1997.
doi:10.1109/8.558654        Google Scholar

20. Yuan, Cheng-Xun, Zhong-Xiang Zhou, Jingwen W. Zhang, Xiao-Li Xiang, Feng Yue, and Hong-Guo Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, Jul. 2011.
doi:10.1109/tps.2011.2151207        Google Scholar

21. Zhang, Yang, Yanming Liu, and Xiaoping Li, "A 2-D FDTD model for analysis of plane wave propagation through the reentry plasma sheath," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 5940-5948, Nov. 2017.
doi:10.1109/tap.2017.2748231        Google Scholar

22. Chen, Wei, Lixin Guo, Jiangting Li, and Songhua Liu, "Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3235-3242, Dec. 2016.
doi:10.1109/tps.2016.2617680        Google Scholar

23. Yuan, C. X., Z. X. Zhou, and H. G. Sun, "Reflection properties of electromagnetic wave in a bounded plasma slab," IEEE Transactions on Plasma Science, Vol. 38, No. 12, 3348-3355, Dec. 2010.
doi:10.1109/tps.2010.2084110        Google Scholar

24. Hu, Bin Jie, Gang Wei, and Sheng Li Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1136, 1999.
doi:10.1109/27.782293        Google Scholar

25. Yang, Min, Xiaoping Li, Bowen Bai, Ze Li, and Bosheng Xue, "Transmission coefficient estimation based on antenna voltage standing wave ratio under plasma sheath," AIP Advances, Vol. 8, No. 7, 075018, Jul. 2018.
doi:10.1063/1.5038763        Google Scholar

26. Liu, Jian-Xiao, Wan-Chun Tang, Yan Jiang, Lu Ju, and Hong-Wei Yang, "A study of frequency selection characteristics of negative conductivity in high temperature plasma," Results in Physics, Vol. 14, 102467, 2019.
doi:10.1016/j.rinp.2019.102467        Google Scholar

27. Fu, Guangyang, Shenjie Zhou, and Lu Qi, "On the strain gradient elasticity theory for isotropic materials," International Journal of Engineering Science, Vol. 154, 103348, 2020.
doi:10.1016/j.ijengsci.2020.103348        Google Scholar

28. Fu, Guangyang, Zhenjie Zhang, Chunmei Dong, Yanfei Sun, Jianjun Wang, and Hongyu Zheng, "On the magneto-mechanical response of piezomagnetic microbeam with size effects," Thin-Walled Structures, Vol. 191, 111040, 2023.
doi:10.1016/j.tws.2023.111040        Google Scholar

29. Fu, Guangyang, Kaikai Jin, Wenjian Song, Shenjie Zhou, and Hongyu Zheng, "On the non-classical transfer matrix method for free vibration behaviour of multi-rigid-elastic unit microsystem," Applied Mathematical Modelling, Vol. 151, 116407, 2026.
doi:10.1016/j.apm.2025.116407        Google Scholar

30. Lieberman, Michael A. and Allan J. Lichtenberg, "Principles of plasma discharges and materials processing," MRS Bulletin, Vol. 30, No. 11, 899-901, 2005.
doi:10.1557/mrs2005.242        Google Scholar

31. Colonna, Gianpiero and Antonio D’Angola, Plasma Modeling: Methods and Applications, IOP Publishing, 2022.
doi:10.1088/978-0-7503-3559-1

32. Chung, T. H., H. S. Yoon, and J. K. Lee, "Scaling laws verification for capacitive rf‐discharge Ar plasma using particle‐in‐cell simulations," Journal of Applied Physics, Vol. 78, No. 11, 6441-6447, 1995.
doi:10.1063/1.360527        Google Scholar

33. Kim, H.-Y., D.-C. Kwon, N.-S. Yoon, H.-H. Choe, and J.-H. Kim, "Development of new method for fluid simulation of capacitivelycoupled plasma discharge," Journal of the Korean Physical Society, Vol. 49, No. 51, 1967-1971, 2006.        Google Scholar

34. Kortshagen, U. and B. G. Heil, "Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach," IEEE Transactions on Plasma Science, Vol. 27, No. 5, 1297-1309, 1999.
doi:10.1109/27.799806        Google Scholar

35. Gudmundsson, J. T. and M. A. Lieberman, "Magnetic induction and plasma impedance in a cylindrical inductive discharge," Plasma Sources Science and Technology, Vol. 6, No. 4, 540, 1997.
doi:10.1088/0963-0252/6/4/012        Google Scholar

36. Boltzmann Solver for the SIGLO Series 1.0 ~CPA Toulouse Kinema Software, 1996.

37. El jaouhari, Ayoub, Majid Rochdi, and Morad El Kaouini, "Effect of discharge parameters on conductive behavior and characteristics of monopole plasma antenna," Materials Today: Proceedings, Vol. 72, 3863-3868, 2023.
doi:10.1016/j.matpr.2022.10.072        Google Scholar

38. Lymberopoulos, Dimitris P. and Demetre J. Economou, "Fluid simulations of glow discharges: Effect of metastable atoms in argon," Journal of Applied Physics, Vol. 73, No. 8, 3668-3679, 1993.
doi:10.1063/1.352926        Google Scholar

39. COMSOL Multiphysics® v6.2.

40. Tonks, Lewi Oscillations in ionized gases, 122-139 Elsevier, 1961.
doi:10.1016/b978-1-4831-9913-9.50014-5

41. Huray, Paul G., Maxwell's Equations, John Wiley & Sons, 2009.
doi:10.1002/9780470549919

42. Haas, F. A., A. Goodyear, and N. S. J. Braithwaite, "Tailoring of electron energy distributions in low temperature plasmas," Plasma Sources Science and Technology, Vol. 7, No. 4, 471, 1998.
doi:10.1088/0963-0252/7/4/005        Google Scholar

43. Wang, Ying, Chengxun Yuan, Zhongxiang Zhou, Lei Li, and Yanwei Du, "Propagation of Gaussian laser beam in cold plasma of Drude model," Physics of Plasmas, Vol. 18, No. 11, 113105, 2011.
doi:10.1063/1.3662433        Google Scholar

44. CST Microwave Studio®, CST Studio Suite 2024.

45. Bogdanov, E. N., M. V. Zhernokletov, G. A. Kozlov, and A. V. Rodionov, "Study of shock-compressed argon plasma using microwave diagnostics," Combustion, Explosion, and Shock Waves, Vol. 56, No. 4, 479-485, 2020.
doi:10.1134/s0010508220040127        Google Scholar

46. Reinholz, H., Yu. Zaporoghets, V. Mintsev, V. Fortov, I. Morozov, and G. Röpke, "Frequency-dependent reflectivity of shock-compressed xenon plasmas," Physical Review E, Vol. 68, No. 3, 036403, 2003.
doi:10.1103/physreve.68.036403        Google Scholar

47. Bethke, George W. and Allen D. Ruess, "Microwave reflection from shock-produced plasmas," Physics of Fluids, Vol. 7, No. 9, 1446-1455, 1964.
doi:10.1063/1.1711398        Google Scholar

48. Yuan, Chengxun, Zhongxiang Zhou, Xiaoli Xiang, Hongguo Sun, He Wang, Mengda Xing, and Zhengjun Luo, "Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, No. 1, 23-29, 2011.
doi:10.1016/j.nimb.2010.10.003        Google Scholar

49. Twiss, R. Q., "Radiation transfer and the possibility of negative absorption in radio astronomy," Australian Journal of Physics, Vol. 11, No. 4, 564-579, 1958.
doi:10.1071/ph580564        Google Scholar

50. Kruer, William, The Physics of Laser Plasma Interactions, CRC Press, 2019.
doi:10.1201/9781003003243