Vol. 117
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2026-01-14
Multispectral Optical Emission Modeling of Sprites Using Plasma Streamer Simulations: A Computational Electromagnetics Approach for Remote Sensing Applications
By
Progress In Electromagnetics Research B, Vol. 117, 16-28, 2026
Abstract
We present a computational framework for the multispectral synthesis of optical emissions in Transient Luminous Events (TLEs), specifically sprites, based on plasma fluid simulations obtained with the Afivo Streamer tool. Using the simulated electric field and electron density, we compute quasi-stationary excitation, quenching, and radiative emission rates for four key spectral bands: first positive 1PN2 and second positive 2PN2 band systems of nitrogen, Lyman-Birge-Hopfield (LBH) band system, and Optical emission images OI (Ionized Atomic Oxygen) at 777.4 nm (OI 777.4 nm). The model incorporates electron-impact excitation coefficients k(E/N), non-radiative losses due to collisional quenching Q = Σiαini, and atmospheric attenuation (especially relevant for LBH). It also produces 2D emission maps and vertical brightness profiles, showing the spatial localization of each band as a function of the reduced electric field, electron density, and non-radiative losses. The results capture the temporal evolution of the discharge, from the early propagation phase to advanced branching, enabling direct comparisons with spaceborne instrumentation (e.g., ASIM). The developed scheme provides a reproducible diagnostic tool that links plasma physical variables with observed signals across multiple spectral bands.
Citation
Carlos Antonio Gómez Vargas, and Francisco José Román Campos, "Multispectral Optical Emission Modeling of Sprites Using Plasma Streamer Simulations: A Computational Electromagnetics Approach for Remote Sensing Applications," Progress In Electromagnetics Research B, Vol. 117, 16-28, 2026.
doi:10.2528/PIERB25112704
References

1. Ihaddadene, Mohand A. and Sebastien Celestin, "Determination of sprite streamers altitude based on N2 spectroscopic analysis," Journal of Geophysical Research: Space Physics, Vol. 122, No. 1, 1000-1014, 2017.
doi:10.1002/2016ja023111        Google Scholar

2. Chou, J. K., L. Y. Tsai, C. L. Kuo, Y. J. Lee, C. M. Chen, A. B. Chen, H. T. Su, R. R. Hsu, P. L. Chang, and L. C. Lee, "Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign," Journal of Geophysical Research: Space Physics, Vol. 116, No. A7, 2011.
doi:10.1029/2010ja016162        Google Scholar

3. Pérez-Invernón, F. J., A. Malagón-Romero, F. J. Gordillo-Vázquez, and A. Luque, "The contribution of sprite streamers to the chemical composition of the mesosphere-lower thermosphere," Geophysical Research Letters, Vol. 47, No. 14, e2020GL088578, 2020.
doi:10.1029/2020gl088578        Google Scholar

4. Pasko, Victor P., "Recent advances in theory of transient luminous events," Journal of Geophysical Research: Space Physics, Vol. 115, No. A6, 2010.
doi:10.1029/2009ja014860        Google Scholar

5. Neubert, Torsten, Nikolai Østgaard, Victor Reglero, Elisabeth Blanc, Olivier Chanrion, Carol Anne Oxborrow, Astrid Orr, Matteo Tacconi, Ole Hartnack, and Dan D. V. Bhanderi, "The ASIM mission on the international space station," Space Science Reviews, Vol. 215, No. 2, 26, 2019.
doi:10.1007/s11214-019-0592-z        Google Scholar

6. Teunissen, Jannis and Ute Ebert, "Afivo: A framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods," Computer Physics Communications, Vol. 233, 156-166, 2018.
doi:10.1016/j.cpc.2018.06.018        Google Scholar

7. Liu, Ningyu, Victor P. Pasko, David H. Burkhardt, Harald U. Frey, Stephen B. Mende, Han-Tzong Su, Alfred B. Chen, Rue-Ron Hsu, Lou-Chuang Lee, Hiroshi Fukunishi, and Yukihiro Takahashi, "Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite," Geophysical Research Letters, Vol. 33, No. 1, 2006.
doi:10.1029/2005gl024243        Google Scholar

8. Luque, A. and U. Ebert, "Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity," Geophysical Research Letters, Vol. 37, No. 6, 2010.
doi:10.1029/2009gl041982        Google Scholar

9. Liu, Ningyu and Victor P. Pasko, "Molecular nitrogen LBH band system far-UV emissions of sprite streamers," Geophysical Research Letters, Vol. 32, No. 5, 2005.
doi:10.1029/2004gl022001        Google Scholar

10. Pancheshnyi, S., S. Biagi, M. C. Bordage, G. J. M. Hagelaar, W. L. Morgan, A. V. Phelps, and L. C. Pitchford, "The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling," Chemical Physics, Vol. 398, 148-153, 2012.
doi:10.1016/j.chemphys.2011.04.020        Google Scholar

11. Bílek, Petr, Tiago Cunha Dias, Václav Prukner, Vasco Guerra, and Milan Šimek, "Streamer-induced kinetics of excited states in pure N2: II. Formation of N2(B3Πg, v = 0-21) through analysis of emission produced by the first positive system," Plasma Sources Science and Technology, Vol. 33, No. 1, 015011, Jan. 2024.
doi:10.1088/1361-6595/ad1c09        Google Scholar

12. Shibusawa, Kenji and Masato Funatsu, "Radiative characteristics of N2 first positive band in visible and near-infrared regions for microwave-discharged nitrogen plasma," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 62, No. 2, 86-92, 2019.
doi:10.2322/tjsass.62.86        Google Scholar

13. Gochitashvili, Malkhaz R., Roman Ya. Kezerashvili, and Ramaz A. Lomsadze, "Excitation of Meinel and the first negative band system at the collision of electrons and protons with the nitrogen molecule," Physical Review A, Vol. 82, No. 2, 022702, 2010.
doi:10.1103/physreva.82.022702        Google Scholar

14. Liu, Ningyu and Victor P. Pasko, "Effects of photoionization on propagation and branching of positive and negative streamers in sprites," Journal of Geophysical Research: Space Physics, Vol. 109, No. A4, 2004.
doi:10.1029/2003ja010064        Google Scholar

15. Keilhauer, B., R. Engel, H. Klages, and T. Waldenmaier, "Nitrogen fluorescence yield in dependence on atmospheric conditions," Proceedings of the 29th International Cosmic Ray Conference, Vol. 7, 119, Pune, India, 2005.

16. Teunissen, Jannis, "Improvements for drift-diffusion plasma fluid models with explicit time integration," Plasma Sources Science and Technology, Vol. 29, No. 1, 015010, 2020.
doi:10.1088/1361-6595/ab6757        Google Scholar

17. Gordillo-Vázquez, F. J. and F. J. Pérez-Invernón, "A review of the impact of transient luminous events on the atmospheric chemistry: Past, present, and future," Atmospheric Research, Vol. 252, 105432, 2021.
doi:10.1016/j.atmosres.2020.105432        Google Scholar

18. Chanrion, Olivier, Torsten Neubert, Ib Lundgaard Rasmussen, Christian Stoltze, Denis Tcherniak, Niels Christian Jessen, Josef Polny, Peter Brauer, Jan E. Balling, Steen Savstrup Kristensen, et al. "The modular multispectral imaging array (MMIA) of the ASIM payload on the international space station," Space Science Reviews, Vol. 215, No. 4, 28, 2019.
doi:10.1007/s11214-019-0593-y        Google Scholar

19. Lepikhin, N. D., N. A. Popov, and S. M. Starikovskaia, "On electric field measurements based on intensity ratio of 1- and 2+ systems of nitrogen in discharges with high specific deposited energy," Plasma Sources Science and Technology, Vol. 31, No. 8, 084002, Aug. 2022.
doi:10.1088/1361-6595/ac61a6        Google Scholar

20. Favre, Aurélien, Milan Dimitrijevic, Vincent Morel, Stevica Djurovic, Zoran Mijatovic, Gilles Godard, and Arnaud Bultel, "Study of the 777 nm lines profile of atomic oxygen using laser-induced plasmas," SCSLSA, 2019.

21. Stamnes, K., "Radiation transfer in the atmosphere: Ultraviolet radiation," Encyclopedia of Atmospheric Sciences, 2nd ed., G. R. North, J. Pyle, and F. Zhang, Eds., 37-44, Academic Press, Oxford, 2015.

22. Yoshino, K., W. H. Parkinson, K. Ito, and T. Matsui, "Absolute absorption cross-section measurements of Schumann-Runge continuum of O2 at 90 and 295 K," Journal of Molecular Spectroscopy, Vol. 229, No. 2, 238-243, 2005.
doi:10.1016/j.jms.2004.08.020        Google Scholar

23. Stamnes, K., G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the Atmosphere and Ocean, 2nd Ed., Cambridge University Press, 2017.
doi:10.1017/9781316148549

24. Liu, Ningyu, "Dynamics of positive and negative streamers in sprites," The Pennsylvania State University, PA, USA, 2006.

25. Caplinger, James E. and Glen P. Perram, "The importance of cascade emission and metastable excitation in modeling strong atomic oxygen lines in laboratory plasmas," Plasma Sources Science and Technology, Vol. 29, No. 1, 015011, 2020.
doi:10.1088/1361-6595/ab5e5f        Google Scholar

26. Ebert, Ute, Sander Nijdam, Chao Li, Alejandro Luque, Tanja Briels, and Eddie van Veldhuizen, "Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning," Journal of Geophysical Research: Space Physics, Vol. 115, No. A7, 2010.
doi:10.1029/2009ja014867        Google Scholar

27. Nijdam, Sander, Jannis Teunissen, and Ute Ebert, "The physics of streamer discharge phenomena," Plasma Sources Science and Technology, Vol. 29, No. 10, 103001, 2020.
doi:10.1088/1361-6595/abaa05        Google Scholar

28. Liu, Ningyu, Victor P. Pasko, Harald U. Frey, Stephen B. Mende, Han-Tzong Su, Alfred B. Chen, Rue-Ron Hsu, and Lou-Chuang Lee, "Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements," Journal of Geophysical Research: Space Physics, Vol. 114, No. A3, 2009.
doi:10.1029/2008JA013735        Google Scholar

29. Pérez-Invernón, Francisco J., Francisco J. Gordillo-Vázquez, María Passas-Varo, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard, "Multispectral optical diagnostics of lightning from space," Remote Sensing, Vol. 14, No. 9, 2057, 2022.
doi:10.3390/rs14092057        Google Scholar

30. Baker, Doran J., "Rayleigh, the unit for light radiance," Applied Optics, Vol. 13, No. 9, 2160-2163, 1974.
doi:10.1364/ao.13.002160        Google Scholar

31. Sentman, D. D., H. C. Stenbaek-Nielsen, M. G. McHarg, and J. S. Morrill, "Plasma chemistry of sprite streamers," Journal of Geophysical Research: Atmospheres, Vol. 113, No. D11, 2008.
doi:10.1029/2007jd008941        Google Scholar

32. Gordillo-Vázquez, F. J., "Air plasma kinetics under the influence of sprites," Journal of Physics D: Applied Physics, Vol. 41, No. 23, 234016, Nov. 2008.
doi:10.1088/0022-3727/41/23/234016        Google Scholar

33. Luque, Alejandro and Ute Ebert, "Growing discharge trees with self-consistent charge transport: The collective dynamics of streamers," New Journal of Physics, Vol. 16, No. 1, 013039, 2014.
doi:10.1088/1367-2630/16/1/013039        Google Scholar

34. Stetson University, "Fluorescence lifetimes and dynamic quenching," ChemLibreTexts, [Online]. Available: https://tinyurl.com/fluor-lifetime, Mar. 2021.

35. Li, J. and S. A. Cummer, "Measurement of sprite streamer acceleration and deceleration," Geophysical Research Letters, Vol. 36, No. 10, 2009.
doi:10.1029/2009gl037581        Google Scholar

36. Malagón-Romero, A., A. Luque, Nicholas S. Shuman, Thomas M. Miller, Shaun G. Ard, and Albert A. Viggiano, "Associative electron detachment in sprites," Geophysical Research Letters, Vol. 51, No. 11, e2023GL107990, 2024.
doi:10.1029/2023gl107990        Google Scholar

37. Teunissen, Jannis and Ute Ebert, "Simulating streamer discharges in 3D with the parallel adaptive Afivo framework," Journal of Physics D: Applied Physics, Vol. 50, No. 47, 474001, 2017.
doi:10.1088/1361-6463/aa8faf        Google Scholar

38. Wang, Zhen, Anbang Sun, and Jannis Teunissen, "A comparison of particle and fluid models for positive streamer discharges in air," Plasma Sources Science and Technology, Vol. 31, No. 1, 015012, Jan. 2022.
doi:10.1088/1361-6595/ac417b        Google Scholar

39. Wang, Zhen, Anbang Sun, and Jannis Teunissen, "A model comparison of 2D Cartesian and 2D axisymmetric models for positive streamer discharges in air," arXiv preprint arXiv:2401.12353, 2024.
doi:10.48550/arXiv.2401.12353        Google Scholar