Vol. 29
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-15
2.45 GHz (Cw) Microwave Irradiation Alters Circadian Organization, Spatial Memory, Dna Structure in the Brain Cells and Blood Cell Counts of Male Mice, Mus Musculus
By
Progress In Electromagnetics Research B, Vol. 29, 23-42, 2011
Abstract
Present study examines biological effects of 2.45 GHz microwave radiation in Parkes strain mice. Forty-day-old mice were exposed to CW (continuous wave) microwave radiation (2 h/day for 30 days). Locomotor activity was recorded on running wheel for 12 days prior to microwave exposure (pre-exposure), 7 days during the first week of exposure (short-term exposure) and another 7-day spell during the last week of the 30-day exposure period (long-term exposure). Morris water maze test was performed from 17th to 22nd day of exposure. At the termination of the exposure, blood was processed for hematological parameters, brain for comet assay, epididymis for sperm count and motility and serum for SGOT (serum glutamate oxaloacetate transaminase) and SGPT (serum glutamate pyruvate transaminase). The results show that long-term radiation-exposed group exhibited a positive y (phase angle difference) for the onset of activity with reference to lights-off timing and most of the activity occurred within the light fraction of the LD (light: dark) cycle. Microwave radiation caused an increase in erythrocyte and leukocyte counts, a significant DNA single strand break in brain cells and the loss of spatial memory in mice. This report for the first time provides experimental evidence that continuous exposure to low intensity microwave radiation may have an adverse effect on the brain function by altering circadian system and rate of DNA damage.
Citation
Chandra Mohini Chaturvedi, Vineet Prakash Singh, Priyanka Singh, Priyoneel Basu, Muniyandi Singaravel, Ritesh K. Shukla, Alok Dhawan, Atanu Kumar Pati, Ravi Kumar Gangwar, and Surya Singh, "2.45 GHz (Cw) Microwave Irradiation Alters Circadian Organization, Spatial Memory, Dna Structure in the Brain Cells and Blood Cell Counts of Male Mice, Mus Musculus," Progress In Electromagnetics Research B, Vol. 29, 23-42, 2011.
doi:10.2528/PIERB11011205
References

1. WHO Information, , Electromagnetic field and public health, Fact sheet 182, 1998.

2. Hardell, L., K. H. Mild, and M. Carlberg, "Further aspects on cellular and cordless telephones and brain tumours," International Journal of Oncology, Vol. 22, 399-407, 2003.        Google Scholar

3. Heynick, L. N., S. A. Johnston, A. Patrick, and P. A. Mason, "Radio frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity," Bioelctromagnetics, Vol. 24, s74-s100, 2003.
doi:10.1002/bem.10162        Google Scholar

4. Cleary, S. F., "Biological effects of radiofrequency electromagnetic fields," Biological Effects and Medical Applications of Electromag netic Energy, 236-255, O. P. Gandhi (ed.), Prentice Hall, Englewood Cli?s, NJ, 1990.        Google Scholar

5. Neubauer, C., A. M. Phelan, H. Kues, and D. G. Lange, "Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex," Bioelectromagnetics, Vol. 11, No. 4, 261-268, 1990.
doi:10.1002/bem.2250110402        Google Scholar

6. Blackman, C. F., S. G. Benane, L. S. Kinney, D. E. House, and W. T. Joines, "Effects of ELF fields on calcium-ion efflux from brain tissue," Radiation Research, Vol. 92, 510-520, 1982.
doi:10.2307/3575923        Google Scholar

7. Paulraj, R. and J. Behari, "The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain," Electromagnetic Biology and Medicine, Vol. 21, No. 3, 221-231, 2002.
doi:10.1081/JBC-120015993        Google Scholar

8. Byus, C. V., R. L. Lundak, R. M. Fletcher, and W. R. Adey, "Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields," Bioelectromagnetics, Vol. 5, 341-351, 1984.
doi:10.1002/bem.2250050307        Google Scholar

9. Paulraj, R. and J. Behari, "Radiofrequency radiation effect on protein kinase C activity in rats' brain," Mutation Research, Vol. 545, 127-130, 2004.        Google Scholar

10. Kunjilwar, K. K. and J. Behari, "Effect of amplitude modulated radiofrequency radiation on cholenergic system of developing rats," Brain Research, Vol. 601, 321, 1993.
doi:10.1016/0006-8993(93)91729-C        Google Scholar

11. Lai, H., M. A. Carino, A. Horita, and A. W. Guy, "Effects of a 60 Hz magnetic fleld on central cholinergic system of the rat," Bioelectromagnetics, Vol. 14, 5-15, 1993.
doi:10.1002/bem.2250140104        Google Scholar

12. Sarkar, S., S. Ali, and J. Behari, "Effect of low power microwave on the mouse genome: A direct DNA analysis," Mutation Research, Vol. 320, 141-147, 1994.
doi:10.1016/0165-1218(94)90066-3        Google Scholar

13. Malyapa, R. S., E. W. Ahern, W. L. Straube, E. G. Moros, W. F. Pickard, and J. L. Roti Roti, "Measurement of DNA damage after exposure to 2450MHz electromagnetic radiation," Radiation Research, Vol. 148, 608-617, 1997.
doi:10.2307/3579737        Google Scholar

14. Malyapa, R. S., E. W. Ahern, B. Chen, W. L. Straube, M. LaRegina, W. F. Pickard, and J. L. Roti Roti, "DNA damage in rat brain cells after in vivo exposure to 2450MHz electromagnetic radiation and various methods of Euthanasia," Radiation Research, Vol. 149, 637-635, 1998.
doi:10.2307/3579911        Google Scholar

15. Lai, H. and N. P. Singh, "Single and double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation," International Journal of Radiation Biology, Vol. 69, 513-521, 1996.
doi:10.1080/095530096145814        Google Scholar

16. Paulraj. , R. and J. Behari, "Single strand DNA breaks in rat brain cells exposed to microwave radiation," Mutation Research, Vol. 596, 76-80, 2006.        Google Scholar

17. Lai, H. and N. P. Singh, "Acute low level microwave exposure increases DNA single strand breaks in rat brain cells," Bioelectromagnetics, Vol. 16, 207-210, 1995.
doi:10.1002/bem.2250160309        Google Scholar

18. Lai, H. and N. P. Singh, "Magnetic field-induced DNA strand breaks in brain cells of rat," Environmental Health Perspectives, Vol. 112, No. 6, 687-694, 2004.
doi:10.1289/ehp.6355        Google Scholar

19. Kesari, K. K. and J. Behari, "Fifty-gigahertz microwave exposure effect of radiations on rat brain," Applied Biochemistry Biotechnology, 2008, DOI 10.1007/s12010-008-8469-8.        Google Scholar

20. Galvin Michael, J., G. L. MacNichols, and D. I. McRee, "Effect of 2450 mHz microwave radiation on haematopoiesis of pregnant mice," Radiation Research, Vol. 100, 412-417, 1984.
doi:10.2307/3576361        Google Scholar

21. Saunders, R. D. and C. I. Kowalczuk, "Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium," International Journal of Radiation Biology, Vol. 40, No. 6, 623-632, 1981.
doi:10.1080/09553008114551611        Google Scholar

22. Fukui, Y., K. Hoshino, M. Inouye, and Y. Kameyama, "Effects of hyperthermia induced by the microwave irradiation on the brain development in mice," Journal of Radiation Research, Vol. 33, 1-10, 1992.
doi:10.1269/jrr.33.1        Google Scholar

23. Cosquer, B., N. Kuster, and J.-C. Cassel, "Whole-body exposure to 2.45 GHz electromagnetic fields does not alter 12-arm radialmaze with reduced access to spatial cues in rats," Behavioural Brain Research, Vol. 161, 331-334, 2005.
doi:10.1016/j.bbr.2005.02.026        Google Scholar

24. Trosic, I. and I. Busljeta, "Frequency of micronucleated erythrocytes in rat bone marrow exposed to 2.45 GHz radiation," Physica Scripta, Vol. 118, 168-170, 2005.
doi:10.1238/Physica.Topical.118a00168        Google Scholar

25. REFLEX, final report, , Risk evaluation of potential environmental hazards from low energy electromagnetic field exposure using sensitive in vitro methods, 183-242, 2004.

26. Basu, B. N., "Equivalent circuit analysis of a dielectric-supported helix in a metal shell," International Journal of Electronics, Vol. 47, No. 3, 311-314, 1979.
doi:10.1080/00207217908938647        Google Scholar

27. Loshakov, L. N. and E. B. Ol'derogge, "Propagation of slow electromagnetic waves along a helix with dielectric supports ," Radio Engineering and Electronic Physics, Vol. 13, No. 1, 45-51, 1968.        Google Scholar

28. Paik, S. F., "Design formulas for helix dispersion shaping," IEEE Trans. Electron. Devices, Vol. 16, No. 12, 1010-1014, 1969.
doi:10.1109/T-ED.1969.16901        Google Scholar

29. Gandhi, O. P., Biological Effects and Medical Applications of Electromagnetic Energy, Prentice Hall, 1990.

30. Sheeba, V., M. Nihal, S. J. Mathew, N. M. Swamy, M. K. Chandrashekaran, A. Joshi, and V. K. Sharma, "Does the difference in the timing of eclosion of the fruit fly Drosophila melanogaster re°ect differences in the circadian organization?," Chronobiology International, Vol. 18, No. 4, 601-612, 2001.
doi:10.1081/CBI-100106075        Google Scholar

31. Jud, C., I. Schmutz, G. Hampp, H. Oster, and U. A. Albrecht, "A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions," Biological Procedures Online, Vol. 7, 101-116, 2005.
doi:10.1251/bpo109        Google Scholar

32. Morris, R., "Developments of a water-maze procedure for studying spatial learning in the rat," Journal of Neuroscience Methods, Vol. 11, No. 1, 47-60, 1984.
doi:10.1016/0165-0270(84)90007-4        Google Scholar

33. Blazak, W. F., T. L. Ernst, and B. E. Stewart, "Potential indicators of reproductive toxicity: Testicular sperm production and epididymal sperm number, transit time, and motility in Fischer 344 rats," Fundamental and Applied Toxicology, Vol. 5, 1097-1103, 1985.
doi:10.1016/0272-0590(85)90145-9        Google Scholar

34. Dott, H. M. and G. C. Foster, "A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential `life-dead' stain," Journal of Reproduction and Fertility, Vol. 29, 443-445, 1972.        Google Scholar

35. World Health Organisation WHO Laboratory Manual for the Examination of Human Semen and Semen Cervical Mucus Interaction, Cambridge University Press, 1992.

36. Hartmann, A., E. Agurell, C. Beevers, S. Brendler-Schwaab, B. Burlinson, P. Clay, A. Collins, A. Smith, G. Speit, V. Thybaud, and R. R. Tice, "Recommendations for conducting the in vivo alkaline Comet assay," Mutagenesis, Vol. 18, 45-51, 2003.
doi:10.1093/mutage/18.1.45        Google Scholar

37. Patel, S., A. K. Pandey, M. Bajpayee, D. Parmar, and A. Dhawan, "Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the comet assay," Mutation Research, Vol. 607, 176-183, 2006.        Google Scholar

38. Singh, N. P., M. T. McCoy, R. R. Tice, and E. L. Schneider, "A simple technique for quantitation of low levels of DNA damage in individual cells," Experimental Cell Research, Vol. 175, 184-191, 1988.
doi:10.1016/0014-4827(88)90265-0        Google Scholar

39. Sherwin, C. M., "Voluntary wheel running: A review and novel interpretation," Animal Behaviour, Vol. 56, No. 1, 11-27, 1998.
doi:10.1006/anbe.1998.0836        Google Scholar

40. Oroza, M. A., L. Calcicedo, F. Sanchez-Franco, and L. Rivas, "Hormonal, hematological, and serum chemistry effects of weak pulsed electromagnetic fields on rats," Journal of Bioelectricity, Vol. 6, No. 2, 139-151, 1987.        Google Scholar

41. Black, D. R. and L. N. Heynick, "Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions," Bioelectromagnetic Supplements, Vol. 6, S187-S195, 2003.
doi:10.1002/bem.10166        Google Scholar