1. WHO Information, , Electromagnetic field and public health, Fact sheet 182, 1998.
2. Hardell, L., K. H. Mild, and M. Carlberg, "Further aspects on cellular and cordless telephones and brain tumours," International Journal of Oncology, Vol. 22, 399-407, 2003. Google Scholar
3. Heynick, L. N., S. A. Johnston, A. Patrick, and P. A. Mason, "Radio frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity," Bioelctromagnetics, Vol. 24, s74-s100, 2003.
doi:10.1002/bem.10162 Google Scholar
4. Cleary, S. F., "Biological effects of radiofrequency electromagnetic fields," Biological Effects and Medical Applications of Electromag netic Energy, 236-255, O. P. Gandhi (ed.), Prentice Hall, Englewood Cli?s, NJ, 1990. Google Scholar
5. Neubauer, C., A. M. Phelan, H. Kues, and D. G. Lange, "Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex," Bioelectromagnetics, Vol. 11, No. 4, 261-268, 1990.
doi:10.1002/bem.2250110402 Google Scholar
6. Blackman, C. F., S. G. Benane, L. S. Kinney, D. E. House, and W. T. Joines, "Effects of ELF fields on calcium-ion efflux from brain tissue," Radiation Research, Vol. 92, 510-520, 1982.
doi:10.2307/3575923 Google Scholar
7. Paulraj, R. and J. Behari, "The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain," Electromagnetic Biology and Medicine, Vol. 21, No. 3, 221-231, 2002.
doi:10.1081/JBC-120015993 Google Scholar
8. Byus, C. V., R. L. Lundak, R. M. Fletcher, and W. R. Adey, "Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields," Bioelectromagnetics, Vol. 5, 341-351, 1984.
doi:10.1002/bem.2250050307 Google Scholar
9. Paulraj, R. and J. Behari, "Radiofrequency radiation effect on protein kinase C activity in rats' brain," Mutation Research, Vol. 545, 127-130, 2004. Google Scholar
10. Kunjilwar, K. K. and J. Behari, "Effect of amplitude modulated radiofrequency radiation on cholenergic system of developing rats," Brain Research, Vol. 601, 321, 1993.
doi:10.1016/0006-8993(93)91729-C Google Scholar
11. Lai, H., M. A. Carino, A. Horita, and A. W. Guy, "Effects of a 60 Hz magnetic fleld on central cholinergic system of the rat," Bioelectromagnetics, Vol. 14, 5-15, 1993.
doi:10.1002/bem.2250140104 Google Scholar
12. Sarkar, S., S. Ali, and J. Behari, "Effect of low power microwave on the mouse genome: A direct DNA analysis," Mutation Research, Vol. 320, 141-147, 1994.
doi:10.1016/0165-1218(94)90066-3 Google Scholar
13. Malyapa, R. S., E. W. Ahern, W. L. Straube, E. G. Moros, W. F. Pickard, and J. L. Roti Roti, "Measurement of DNA damage after exposure to 2450MHz electromagnetic radiation," Radiation Research, Vol. 148, 608-617, 1997.
doi:10.2307/3579737 Google Scholar
14. Malyapa, R. S., E. W. Ahern, B. Chen, W. L. Straube, M. LaRegina, W. F. Pickard, and J. L. Roti Roti, "DNA damage in rat brain cells after in vivo exposure to 2450MHz electromagnetic radiation and various methods of Euthanasia," Radiation Research, Vol. 149, 637-635, 1998.
doi:10.2307/3579911 Google Scholar
15. Lai, H. and N. P. Singh, "Single and double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation," International Journal of Radiation Biology, Vol. 69, 513-521, 1996.
doi:10.1080/095530096145814 Google Scholar
16. Paulraj. , R. and J. Behari, "Single strand DNA breaks in rat brain cells exposed to microwave radiation," Mutation Research, Vol. 596, 76-80, 2006. Google Scholar
17. Lai, H. and N. P. Singh, "Acute low level microwave exposure increases DNA single strand breaks in rat brain cells," Bioelectromagnetics, Vol. 16, 207-210, 1995.
doi:10.1002/bem.2250160309 Google Scholar
18. Lai, H. and N. P. Singh, "Magnetic field-induced DNA strand breaks in brain cells of rat," Environmental Health Perspectives, Vol. 112, No. 6, 687-694, 2004.
doi:10.1289/ehp.6355 Google Scholar
19. Kesari, K. K. and J. Behari, "Fifty-gigahertz microwave exposure effect of radiations on rat brain," Applied Biochemistry Biotechnology, 2008, DOI 10.1007/s12010-008-8469-8. Google Scholar
20. Galvin Michael, J., G. L. MacNichols, and D. I. McRee, "Effect of 2450 mHz microwave radiation on haematopoiesis of pregnant mice," Radiation Research, Vol. 100, 412-417, 1984.
doi:10.2307/3576361 Google Scholar
21. Saunders, R. D. and C. I. Kowalczuk, "Effects of 2.45 GHz microwave radiation and heat on mouse spermatogenic epithelium," International Journal of Radiation Biology, Vol. 40, No. 6, 623-632, 1981.
doi:10.1080/09553008114551611 Google Scholar
22. Fukui, Y., K. Hoshino, M. Inouye, and Y. Kameyama, "Effects of hyperthermia induced by the microwave irradiation on the brain development in mice," Journal of Radiation Research, Vol. 33, 1-10, 1992.
doi:10.1269/jrr.33.1 Google Scholar
23. Cosquer, B., N. Kuster, and J.-C. Cassel, "Whole-body exposure to 2.45 GHz electromagnetic fields does not alter 12-arm radialmaze with reduced access to spatial cues in rats," Behavioural Brain Research, Vol. 161, 331-334, 2005.
doi:10.1016/j.bbr.2005.02.026 Google Scholar
24. Trosic, I. and I. Busljeta, "Frequency of micronucleated erythrocytes in rat bone marrow exposed to 2.45 GHz radiation," Physica Scripta, Vol. 118, 168-170, 2005.
doi:10.1238/Physica.Topical.118a00168 Google Scholar
25. REFLEX, final report, , Risk evaluation of potential environmental hazards from low energy electromagnetic field exposure using sensitive in vitro methods, 183-242, 2004.
26. Basu, B. N., "Equivalent circuit analysis of a dielectric-supported helix in a metal shell," International Journal of Electronics, Vol. 47, No. 3, 311-314, 1979.
doi:10.1080/00207217908938647 Google Scholar
27. Loshakov, L. N. and E. B. Ol'derogge, "Propagation of slow electromagnetic waves along a helix with dielectric supports ," Radio Engineering and Electronic Physics, Vol. 13, No. 1, 45-51, 1968. Google Scholar
28. Paik, S. F., "Design formulas for helix dispersion shaping," IEEE Trans. Electron. Devices, Vol. 16, No. 12, 1010-1014, 1969.
doi:10.1109/T-ED.1969.16901 Google Scholar
29. Gandhi, O. P., Biological Effects and Medical Applications of Electromagnetic Energy, Prentice Hall, 1990.
30. Sheeba, V., M. Nihal, S. J. Mathew, N. M. Swamy, M. K. Chandrashekaran, A. Joshi, and V. K. Sharma, "Does the difference in the timing of eclosion of the fruit fly Drosophila melanogaster re°ect differences in the circadian organization?," Chronobiology International, Vol. 18, No. 4, 601-612, 2001.
doi:10.1081/CBI-100106075 Google Scholar
31. Jud, C., I. Schmutz, G. Hampp, H. Oster, and U. A. Albrecht, "A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions," Biological Procedures Online, Vol. 7, 101-116, 2005.
doi:10.1251/bpo109 Google Scholar
32. Morris, R., "Developments of a water-maze procedure for studying spatial learning in the rat," Journal of Neuroscience Methods, Vol. 11, No. 1, 47-60, 1984.
doi:10.1016/0165-0270(84)90007-4 Google Scholar
33. Blazak, W. F., T. L. Ernst, and B. E. Stewart, "Potential indicators of reproductive toxicity: Testicular sperm production and epididymal sperm number, transit time, and motility in Fischer 344 rats," Fundamental and Applied Toxicology, Vol. 5, 1097-1103, 1985.
doi:10.1016/0272-0590(85)90145-9 Google Scholar
34. Dott, H. M. and G. C. Foster, "A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential `life-dead' stain," Journal of Reproduction and Fertility, Vol. 29, 443-445, 1972. Google Scholar
35. World Health Organisation WHO Laboratory Manual for the Examination of Human Semen and Semen Cervical Mucus Interaction, Cambridge University Press, 1992.
36. Hartmann, A., E. Agurell, C. Beevers, S. Brendler-Schwaab, B. Burlinson, P. Clay, A. Collins, A. Smith, G. Speit, V. Thybaud, and R. R. Tice, "Recommendations for conducting the in vivo alkaline Comet assay," Mutagenesis, Vol. 18, 45-51, 2003.
doi:10.1093/mutage/18.1.45 Google Scholar
37. Patel, S., A. K. Pandey, M. Bajpayee, D. Parmar, and A. Dhawan, "Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the comet assay," Mutation Research, Vol. 607, 176-183, 2006. Google Scholar
38. Singh, N. P., M. T. McCoy, R. R. Tice, and E. L. Schneider, "A simple technique for quantitation of low levels of DNA damage in individual cells," Experimental Cell Research, Vol. 175, 184-191, 1988.
doi:10.1016/0014-4827(88)90265-0 Google Scholar
39. Sherwin, C. M., "Voluntary wheel running: A review and novel interpretation," Animal Behaviour, Vol. 56, No. 1, 11-27, 1998.
doi:10.1006/anbe.1998.0836 Google Scholar
40. Oroza, M. A., L. Calcicedo, F. Sanchez-Franco, and L. Rivas, "Hormonal, hematological, and serum chemistry effects of weak pulsed electromagnetic fields on rats," Journal of Bioelectricity, Vol. 6, No. 2, 139-151, 1987. Google Scholar
41. Black, D. R. and L. N. Heynick, "Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions," Bioelectromagnetic Supplements, Vol. 6, S187-S195, 2003.
doi:10.1002/bem.10166 Google Scholar