Vol. 16
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-09-27
A Compact Wideband Matching 0.18-μm CMOS UWB Low-Noise Amplifier Using Active Feedback Technique
By
Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010
Abstract
This work presents an ultra-wideband (UWB) low noise amplifier (LNA) with active shunt-feedback technique for wideband and flat gain by using standard 0.18 μm CMOS processes. Different from past resistive shunt-feedback technique, the capacitor supersedes by a transistor in active shunt-feedback technique. The active shunt-feedback provides input matching generating a 50 Ω real part with proper design and achieves flat gain from 2.5 GHz to 12 GHz. The UWB LNA achieved 11.4±0.2 dB gains, 4.5~5.2 dB noise figure (NF), 13.5 mW power consumption at frequency 3.1 GHz to 10.6 GHz, -15 dBm of 1-dB compression point (P1dB), and -3 dBm of input third intercept point (IIP3) at 6 GHz. The chip size including pads is only 0.6×0.5 mm2.
Citation
Jian-Yi Li, Wen-Jeng Lin, Mau-Phon Houng, and Lih-Shan Chen, "A Compact Wideband Matching 0.18-μm CMOS UWB Low-Noise Amplifier Using Active Feedback Technique," Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010.
doi:10.2528/PIERC10090201
References

1. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.

2. Chen, K. H., J. H. Lu, B. J. Chen, and S.-I. Liu, "An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS," IEEE Transactions on Circuits and System, Vol. 54, No. 3, 217-220, 2007.

3. Kim, C. W., M. S. Kang, P. T. Anh, H. T. Kim, and S.-G. Lee, "An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system," IEEE J. Solid-State Circuits, Vol. 40, No. 2, 544-547, 2005.

4. Borremans, J., P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, "Low-area active-feedback low-noise amplifier design in scaled digital CMOS," IEEE J. Solid-State Circuits, Vol. 43, No. 11, 2422-2433, 2008.

5. Yong, G. S. K. and C. E. Saavedra, "A compact capacitor compensated wideband balun in CMOS technology," 24th Biennial Symposium on Communications, 306-309, 2008.

6. Meaamar, A., B. C. Chye, D. M. Anh, and K. S. Yeo, "A 3--8 GHz low-noise CMOS amplifier," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 4, 245-247, 2009.

7. Perumana, B. G., J. H. C. Zhan, S. S. Taylor, B. R. Charlton, and J. Laskar, "Resistive-feedback CMOS low-noise amplifier for multiband applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1218-1225, 2008.

8. Cui, Y., G. Niu, Y. Li, S. S. Taylor, Q. Liang, and J. D. Cressler, "On the excess noise factor and noise parameter equations for RF CMOS," Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, 40-43, 2007.

9. Lin, Y. J., S. S. H. Hsu, J. D. Jin, and C. Y. Chan, "A 3.1--10.6 ultra-wideband CMOS low noise amplifier with current-reused technique," IEEE Microw. Wire. Compon. Lett., Vol. 17, No. 3, 232-234, 2007.

10. Lin, Y. L., H. Y. Liao, and H.-K. Chiou, "Bridged-shunt-series peaking technique for a 3.1--10.6 GHz ultra-wideband CMOS low noise amplifier," Microwave Opt. Technol. Lett., Vol. 50, No. 3, 575-578, 2008.

11. Hsu, M.-T. and S.-K. Lin, "A low-power wideband CMOS low-noise amplifier using current-reused technique," Microwave Opt. Technol. Lett., Vol. 51, No. 9, 2077-2080, 2009.