Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-10-31

Wideband Negative Permittivity Metamaterial for Size Reduction of Stopband Filter in Antenna Applications

By Mahmoud Abdelrahman Abdalla, Mohamed A. Foad, H. A. Elregeily, and Abdelazez.A. Mitkes
Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012
doi:10.2528/PIERC11082509

Abstract

The design and simplified analysis of a compact and wide band (16%) negative permittivity complementary split ring resonator metamaterial is introduced. The proposed metamaterial component was applied to reduce the size of the feeding line filter of microstrip patch antenna for the sake of higher order harmonic suppression. The reduction has been done using only one element of the complementary split ring resonator, while maintaining the antenna's performance. Simplified theoretical study and design of the proposed circuits has been presented. Moreover, experimental results have been done for validation and conformation purpose. Results confirm that almost 95% of the antenna noise harmonics power has been removed.

Citation


Mahmoud Abdelrahman Abdalla, Mohamed A. Foad, H. A. Elregeily, and Abdelazez.A. Mitkes, "Wideband Negative Permittivity Metamaterial for Size Reduction of Stopband Filter in Antenna Applications," Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012.
doi:10.2528/PIERC11082509
http://www.jpier.org/PIERC/pier.php?paper=11082509

References


    1. Radisic, , V., Y. Qian, R. Coccioli, and T. Itoh, , "Novel 2-D photonic, bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, 1998.
    doi:10.1109/75.658644

    2. Yang, , F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits ," IEEE Trans. Microwave Theory Tech.,, Vol. 47, 1509-1514, 1999.
    doi:10.1109/22.780402

    3. Caloz, , C. , T. Itoh, and , "Electromagnetic Metamaterials: Trans-mission Line Theory and Microwave Applications, ," John Wiley & Sons, Inc.,, 2006.

    4. Pendry, J. B., , A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    5. Pendry, , J. B., , A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters,, Vol. 76, , 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    6. Falcone, F., , T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators ," IEEE Microwave and Wireless Components Letters, Vol. 14, 280-282, 2004.
    doi:10.1109/LMWC.2004.828029

    7. Qiang, , L., , Y.-J. Zhao, Q. Sun, W. Zhao, and B. Liu, , "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
    doi:10.2528/PIERC09112102

    8. Lai, , X., Q. Li, P.-Y. Qin, B. Wu, and C.-H. Liang, , "A novel wideband bandpass iflter based on complementary split-ring resonator," Progress In Electromagnetics Research C, 177-184, 2008.
    doi:10.2528/PIERC08013104

    9. Al-Naib, , I. A. I. , M. Koch, and , "Coplanar waveguides incorporating SRRs or CSRRs: A comprehensive study," Progress In Electromagnetics Research B,, Vol. 23, 343-355, 2010.
    doi:10.2528/PIERB10061602

    10. Zhang, , Q.-L., , W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) fiers implemented with complementary split ring resonators," Progress In Electromagnet-ics Research, Vol. 111, 419-432, 2011.
    doi:10.2528/PIER10110307

    11. Ali, , A. , Z. Hu, and , "Microstrip patch antenna incorporating negative permittivity metamaterial for harmonic suppression," The 2nd European Antenna and Propagation Conference EuCAP, 1-3, 2007.

    12. Khan, , S. N., , X. Liu, L. Shao, and Y. Wang, , "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters,, Vol. 14, 127-132, 2010.
    doi:10.2528/PIERL10033105

    13. Ali, , A. , Z. Hu, and , "Broadband antenna with frequency notch characteristic based on complementary split-ring resonators," Antennas and Propagation Society International Symposium, 3468-3471, 2007.

    14. Pendry, , J. B., , A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenom-ena ," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    15. Vendik, I. B., , D. V. Kholodnyak, I. V. Kilmakova, E. V. Serbryakova, P. V. Kapitnova, F. Martin, J. Garcia, I. Gil, and M. Gil, "Applications of right/left handed and resonant left handed transmission lines for microwave circuit design," The 36th European Microwave Conference Proceedings,, 2006.

    16. Balanis, , C. A., , Antenna Theory Analysis and Design, , 3rd Ed., John Wiley & Sons, Inc., , 2005.

    17. Mao, , S.-G., , S.-L. Chen, and C.-W. Huang, , "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1515-1521, 2005.
    doi:10.1109/TMTT.2005.845192