Vol. 25
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-10-31
Wideband Negative Permittivity Metamaterial for Size Reduction of Stopband Filter in Antenna Applications
By
Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012
Abstract
The design and simplified analysis of a compact and wide band (16%) negative permittivity complementary split ring resonator metamaterial is introduced. The proposed metamaterial component was applied to reduce the size of the feeding line filter of microstrip patch antenna for the sake of higher order harmonic suppression. The reduction has been done using only one element of the complementary split ring resonator, while maintaining the antenna's performance. Simplified theoretical study and design of the proposed circuits has been presented. Moreover, experimental results have been done for validation and conformation purpose. Results confirm that almost 95% of the antenna noise harmonics power has been removed.
Citation
Mahmoud Abdelrahman Abdalla Mohamed A. Foad H. A. Elregeily Abdelazez.A. Mitkes , "Wideband Negative Permittivity Metamaterial for Size Reduction of Stopband Filter in Antenna Applications," Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012.
doi:10.2528/PIERC11082509
http://www.jpier.org/PIERC/pier.php?paper=11082509
References

1. Radisic, , V., Y. Qian, R. Coccioli, and T. Itoh, , "Novel 2-D photonic, bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, 69-71, 1998.
doi:10.1109/75.658644

2. Yang, , F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits ," IEEE Trans. Microwave Theory Tech.,, Vol. 47, 1509-1514, 1999.
doi:10.1109/22.780402

3. Caloz, , C. , T. Itoh, and , "Electromagnetic Metamaterials: Trans-mission Line Theory and Microwave Applications, ," John Wiley & Sons, Inc.,, 2006.

4. Pendry, J. B., , A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

5. Pendry, , J. B., , A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters,, Vol. 76, , 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

6. Falcone, F., , T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators ," IEEE Microwave and Wireless Components Letters, Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

7. Qiang, , L., , Y.-J. Zhao, Q. Sun, W. Zhao, and B. Liu, , "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
doi:10.2528/PIERC09112102

8. Lai, , X., Q. Li, P.-Y. Qin, B. Wu, and C.-H. Liang, , "A novel wideband bandpass iflter based on complementary split-ring resonator," Progress In Electromagnetics Research C, 177-184, 2008.
doi:10.2528/PIERC08013104

9. Al-Naib, , I. A. I. , M. Koch, and , "Coplanar waveguides incorporating SRRs or CSRRs: A comprehensive study," Progress In Electromagnetics Research B,, Vol. 23, 343-355, 2010.
doi:10.2528/PIERB10061602

10. Zhang, , Q.-L., , W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) fiers implemented with complementary split ring resonators," Progress In Electromagnet-ics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

11. Ali, , A. , Z. Hu, and , "Microstrip patch antenna incorporating negative permittivity metamaterial for harmonic suppression," The 2nd European Antenna and Propagation Conference EuCAP, 1-3, 2007.

12. Khan, , S. N., , X. Liu, L. Shao, and Y. Wang, , "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters,, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105

13. Ali, , A. , Z. Hu, and , "Broadband antenna with frequency notch characteristic based on complementary split-ring resonators," Antennas and Propagation Society International Symposium, 3468-3471, 2007.

14. Pendry, , J. B., , A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenom-ena ," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

15. Vendik, I. B., , D. V. Kholodnyak, I. V. Kilmakova, E. V. Serbryakova, P. V. Kapitnova, F. Martin, J. Garcia, I. Gil, and M. Gil, "Applications of right/left handed and resonant left handed transmission lines for microwave circuit design," The 36th European Microwave Conference Proceedings,, 2006.

16. Balanis, , C. A., , Antenna Theory Analysis and Design, , 3rd Ed., John Wiley & Sons, Inc., , 2005.

17. Mao, , S.-G., , S.-L. Chen, and C.-W. Huang, , "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1515-1521, 2005.
doi:10.1109/TMTT.2005.845192