Vol. 33
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-05
A 2.45 GHz Reentarnt Coaxial Cavity for Liguid Sterilization Based on Non-Thermal Microwave Effect
By
Progress In Electromagnetics Research C, Vol. 33, 145-156, 2012
Abstract
According to the intracellular electromanipulation model, bacteria can be killed at as high as 106 V/m electrical fields on microwave band. We designed and constructed a modified microwave coaxial cavity resonator for liquid sterilization. The cavity could concentrate the field on a very small area, and the liquid can pass it in milliseconds. The bacteria can be killed by the very high field, but with a slight temperature increase. The designed resonator is simulated and analyzed by the electromagnetic simulation code, the results indicated that when the input power reaches 100 W, the electric field on the area of liquid can reach 106 V/m. Preliminary experimental results indicated that when the input power was 100W, the bactericidal rate was > 90%, and the temperature of the liquid only increased 8.6°C.
Citation
Yuling Zhang Bao-Qing Zeng Hai Zhang , "A 2.45 GHz Reentarnt Coaxial Cavity for Liguid Sterilization Based on Non-Thermal Microwave Effect," Progress In Electromagnetics Research C, Vol. 33, 145-156, 2012.
doi:10.2528/PIERC12061704
http://www.jpier.org/PIERC/pier.php?paper=12061704
References

1. Wu, Q., "Effect of high-power microwave on indicator bacteria for sterilization," IEEE Trans. Biomedical Engineering, Vol. 43, No. 7, 752-754, 1996.
doi:10.1109/10.503183

2. Park, B. J., D. H. Lee, J. C. Park, I. S. Lee, K. Y. Lee, S. O. Hyun, M. S. Chun, and K. H. Chung, "Sterilization using a microwave-induced argon plasma system at atmospheric pressure," Physics of Plasmas, Vol. 10, No. 11, 4539-4544, 2003.
doi:10.1063/1.1613655

3. Chau, T. T., K. C. Kao, G. Blank, and F. Madrid, "Microwave plasmas for low-temperature dry sterilization," Biomaterials, Vol. 17, No. 13, 1273-1277, 1996.
doi:10.1016/S0142-9612(96)80003-2

4. Moisan, M., J. Barbeau, M.-C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, "Plasma sterilization: Methods and mechanisms," Pure and Applied Chemistry, Vol. 74, No. 3, 349-358, 2002.
doi:10.1351/pac200274030349

5. Montie, T. C., K. Kelly-Wintenberg, and J. R. Roth, "An overview of research using the one atmosphere uniform glow discharge plasma for sterilization of surfaces and materials," IEEE Trans. Plasma Science, Vol. 28, No. 1, 41-50, 2000.
doi:10.1109/27.842860

6. Wu, B. I., F. C. A. I. Cox, and J. A. Kong, "Experimental methodology for non-thermal effects of electromagnetic radiation on biologics," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 533-548, 2007.
doi:10.1163/156939307780616829

7. Niu, Z. Q., et al., "The window bioeffects of electromagnetic waves," Chinese Journal of Biomedical Engineering, Vol. 22, No. 2, 126-132, 2003.

8. Tang, S. J., B. H. Wang, and J. K. Zhong, "Review on the investigation of the mechanism of the biological effects of the electromagnetic radiation," Foreign Medical Sciences, Vol. 21, No. 1, 20-23, 1998.

9. Xi, X. L., D. C. Wu, and G. Wang, "Research and development on microwave sterilization," Journal of Biomedical Engineering, Vol. 19, No. 2, 334-336, 2002.

10. Angulo, L. D., S. G. Garcia, and M. F. Pantoja, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.
doi:10.1163/156939310791036322

11. Karl, H. S., S. J. Beebe, and E. S. Buescher, "Intracellular effect of ultrashort electrical pulses," Bioelectromagnetics, Vol. 22, No. 6, 440-448, 2001.
doi:10.1002/bem.71

12. Karl, H. S. and R. P. Joshi, "Ultrashort electrical pulses open a new gateway into biological cells," Proceedings of the IEEE, Vol. 29, No. 7, 1122-1137, 2004.

13. Ishihara, Y., Y. Gotanda, N. Wadamori, and J. Matsuda, "Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors," Rev. Sci. Instrum., Vol. 78, 024301, 2007.
doi:10.1063/1.2437203

14. Barroso, J. J., P. J. Castro, J. P. L. Neto, and O. D. Aguiar, "Analysis and simulation of reentrant cylindrical cavities," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1071-1083, 2005.
doi:10.1007/s10762-005-7268-3

15. Carter, R. G., J. J. Feng, and U. Becker, "Calculation of the properties of reentrant cylindrical cavity resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2531-2537, 2007.
doi:10.1109/TMTT.2007.909750

16. Zaginaylov, G. I. and I. V. Mitina, "Electromagnetic analysys of coaxial gyrotron cavity with the inner conductor having corrugations of an arbitrary shape ," Progress In Electromagnetics Research B, Vol. 31, 339-356, 2011.

17. Li, L. Q., C. H. Liang, and G. Li, "The design technique for coaxial resonator cavity duplexer," Progress In Electromagnetics Research M, Vol. 2, 105-114, 2008.
doi:10.2528/PIERM08033102

18. Zhang, H., B. Q. Zeng, and Z. H. Yang, "Simulation of the characteristics of electromagnetic field within the coaxial microwave sterilization equipment," Journal of the University of Electronic Science and Technology of China, Vol. 36, No. 2, 232-234, 2007.

19. Li, C. M., K. Wang, and C. K. Chen, "Small tri-band monopole antenna for WiMAX/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1297-1307, 2011.
doi:10.1163/156939311795762132