Vol. 62
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-02-12
Compact Rectenna Design for Lossy Paper Substrate at 2.45 GHz
By
Progress In Electromagnetics Research C, Vol. 62, 61-70, 2016
Abstract
This work presents a compact rectenna based on printed on paper electronics. The rectenna is printed using mass production technique on an environmental-friendly and flexible paper substrate. Only one ink layer is used. The characterized paper substrates present minimum tangent losses of 0.08. It shows at most 40 times higher tangent loss than commercial substrates (Rogers Ultralam2000). A reduction of 50% of dielectric losses can be achieved by a good selection of the paper type; the selected paper substrate is a corrugated cardboard with 0.04 loss tangent value. The designed rectenna is based on two series-mounted SMS7630 Schottky diodes. Co-design technique has been used in order to integrate different blocks for additional loss reduction. The goal of our work is the use of a recyclable cardboard substrate with low-losses compared to classical paper substrate and high losses compared to commercial substrates. The printed on cardboard rectenna presents similar performances to a rectenna etched on commercial substrates. This device aims to convert high voltage levels (1V) at low power levels (-15 dBm) for self-sustainable devices. For our application, an electrochromic display is supplied for anti-counterfeiting purposes. When a smartphone operating on Wi-Fi mode is close, the printed rectenna exhibits 970 mV DC which is sufficient to turn on the electrochromic display.
Citation
Ines Kharrat Pascal Xavier Tan-Phu Vuong Guy Eymin Petot Tourtollet , "Compact Rectenna Design for Lossy Paper Substrate at 2.45 GHz ," Progress In Electromagnetics Research C, Vol. 62, 61-70, 2016.
doi:10.2528/PIERC15093005
http://www.jpier.org/PIERC/pier.php?paper=15093005
References

1. Chang, J., T. Ge, and E. Sanchez-Sinencio, "Challenges of printed electronics on flexible substrates," Proc. MWSCAS, 582-585, 2012.

2. Brown, W. C., "The history of power transmission by radio waves," IEEE Trans. Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

3. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873

4. Yamashita, T., K. Honda, and K. Ogawa, "High efficiency MW-band rectenna using a coaxial dielectric resonator and distributed capacitors," Proc. EMTS, 823-826, 2013.

5. Zang, F., H. Nam, and J.-C. Lee, "A novel compact folded dipole architecture for 2.45 GHz rectenna application," Proc. APMC, 2766-2769, 2009.

6. Alam, S. B., M.-S. Ullah, and S. Moury, "Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna," Proc. ICIEV, 1-4, 2013.

7. Tudose, D. S. and A. Voinescu, "Rectifier antenna design for wireless sensor networks," Proc. CSCS, 184-188, 2013.

8. Visser, H. J., "Printed folded dipole antenna design for rectenna and RFID application," Proc. EUCAP, 2852-2855, 2013.

9. Yang, X. X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Trans. Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550

10. Ushiijima, Y., et al., "5.8-GHz integrated differential rectenna unit using both-sided MIC technology with design flexibility," IEEE Trans. Antennas and Propagation, Vol. 61, No. 6, 3357-3360, 2013.
doi:10.1109/TAP.2013.2247554

11. Adami, S. E., et al., "Self-powered ultra-low power DC-DC converter for RF energy harvesting," Faible Tension Faible Consommation (FTFC), IEEE, 1-4, 2012.
doi:10.1109/FTFC.2012.6231746

12. Danine, A., et al., "Room temperature UV treated WO3 thin films for electrochromic devices on paper substrate," Electrochimica Acta, Vol. 129, 113-119, 2014.
doi:10.1016/j.electacta.2014.02.028

13. Monk, P. M. S., R. J. Mortimer, and D. R. Rosseinsky, "Electrochromism and electrochromic devices,", ISBN-13 978-0-521-82269-5, 2007.

14. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications," IEEE Antennas and Propagation Magazine, Vol. 51, No. 3, 13-23, 2009.
doi:10.1109/MAP.2009.5251188

15. Kawabata, H., T. Kobayashi, Y. Kobayashi, and Z. Ma, "Measurement accuracy of a TM0m0 mode cavity method to measure complex permittivity of rod samples," Proc. APMC, 1465-1470, 2006.

16. Ghiotto, A., "Conception d'antennes de tags RFID UHF, application à la réalisation par Jet de matière,", Phd thesis, Institut Polytechnique de Grenoble, 2008.

17. Notingher, P. V., et al., "Dielectric losses in cellulose-based insulations," Proc. SIELMEN, 169-174, 2009.

18. McSpadden, J., L. Fan, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 12, 2053-2060, 1998.
doi:10.1109/22.739282

19. Takhedmit, H., L. Cirio, Z. Saddi, J.-D. Lan Sun Luk, and O. Picon, "A novel dual-frequency rectifier based on a 180° hybrid junction for RF energy harvesting," Proc. EUCAP, 2472-2475, 2013.

20. SKYWORKS, "SMS7630-093: 0201 surface mount silicon Schottky zero bias detector diode,", 2008.

21. Franciscatto, B. R., V. Freitas, J.-M. Duchamp, C. Defay, and T. P. Vuong, "A different approach to a highly efficient wireless energy harvesting device for low-power application," Microwave & Optoelectronics Conference (IMOC), 2013 SBMO/IEEE MTT-S International, 1-5, 2013.
doi:10.1109/IMOC.2013.6646556

22. Agilent Technologies, "Diode detector simulation using Agilent technologies EEsof ADS software,", Application note 1156.

23. Kharrat, I., et al., "Design and realization of printed on paper antennas," 7th European Conference on Antennas and Propagation, 3199-3202, Sweden, April 2013.