Vol. 62
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-03-02
A Novel Time Reversal Based Microwave Imaging System
By
Progress In Electromagnetics Research C, Vol. 62, 139-147, 2016
Abstract
This paper presents an alternate microwave imaging system that greatly reduces design and operation complexities compared to traditional imaging systems. At the heart of this novel system lies an electronically reconfigurable beam-scanning reflectarray antenna. The high tuning capability of the reflectarray provides us a broad steering range of ±60˚. The beam is steered across this range and the scattered field is recorded. The collected data are used for image reconstruction by means of the time reversal signal processing technique. Experimental results of the detection of various dielectric targets are presented.
Citation
Amin Tayebi Pavel Roy Paladhi Lalita Udpa Satish Udpa , "A Novel Time Reversal Based Microwave Imaging System," Progress In Electromagnetics Research C, Vol. 62, 139-147, 2016.
doi:10.2528/PIERC16012403
http://www.jpier.org/PIERC/pier.php?paper=16012403
References

1. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

2. Liu, Z., H. Ukida, P. Ramuhalli, and K. Niel, Integrated Imaging and Vision Techniques for Industrial Inspection, Springer, 2015.
doi:10.1007/978-1-4471-6741-9

3., Cancer Facts & Figures, American Cancer Society, Inc., Atlanta, GA, 2015.

4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933

5. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, 2007.
doi:10.1109/MIM.2007.364985

6. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1805-1808, 2000.

7. Qing, A. and C. K. Lee, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton-Kantorivitch method," Progress In Electromagnetics Research, Vol. 28, 275-294, 2000.
doi:10.2528/PIER99111102

8. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "Comparison of no-prior and soft-prior regularization in biomedical microwave imaging," J. Med. Phys., Vol. 36, 159-170, 2011.
doi:10.4103/0971-6203.83482

9. Ostadrahimi, M., P. Mojtabai, S. Noghanian, J. LoVetri, and L. Shafai, "A multiprobe-per-collector modulated scatterer technique for microwave tomography," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1445-1448, 2011.
doi:10.1109/LAWP.2011.2179110

10. Gilmore, C., A. Zakaria, S. Pistorius, and J. LoVetri, "Microwave imaging of human forearms: Pilot study and image enhancement," Int. J. Biomed. Imaging, Vol. 2013, 673027, 2013.

11. Epstein, N. R., P. M. Meaney, and K. D. Paulsen, "3D parallel-detection microwave tomography for clinical breast imaging," Rev. Sci. Instrum., Vol. 85, 124704, 2014.
doi:10.1063/1.4901936

12. Arunachalam, K., L. Udpa, and S. Udpa, "Microwave imaging of penetrable scatterers using deformable mirror," IEEE Trans. Magn., Vol. 43, No. 4, 1805-1808, 2007.
doi:10.1109/TMAG.2007.892505

13. Arunachalam, K., L. Udpa, and S. Udpa, "A computational investigation of microwave breast imaging using deformable reflector," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, 554-562, 2008.
doi:10.1109/TBME.2007.903702

14. Huang, J. and J. A. Enicar, Reflectarray Antennas, Wiley-IEEE Press, New Jersey, 2007.
doi:10.1002/9780470178775

15. Hum, S. V. and J. Perruissea-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 183-198, 2014.
doi:10.1109/TAP.2013.2287296

16. Nayeri, P., F. Yang, and A. Z. Elsherbani, "Beam-scanning reflectarray antennas: A technical overview and state of the art," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 32-47, 2015.
doi:10.1109/MAP.2015.2453883

17. Tang, J., A. Tayebi, S. Udpa, E. J. Rothwell, and A. Temme, "A dual-band tunable reflectarray," Proc. Int. Symp. Antennas Propag., 1033-1034, 2014.

18. Tayebi, A., J. Tang, P. Roy Paladhi, L. Udpa, and S. S. Udpa, "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conf. Proc., Vol. 1650, 501-508, 2015.
doi:10.1063/1.4914647

19. Tayebi, A., J. Tang, P. Roy Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939

20. Zubir, F., M. K. Abd Rahim, O. B. Ayop, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with minkowski shape radiating element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208

21. Perry, B. T., E. J. Rothwell, and L. C. Kempel, "A comparison of the measured pulse response of layered materials using time- and frequency-domain systems," IEEE Antennas Propag. Mag., Vol. 49, No. 5, 117-123, 2007.
doi:10.1109/MAP.2007.4395310

22. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

23. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

24. Razavian, M., M. H. Hosseini, and R. Safian, "Time-reversal microwave imaging based on random configuration of transmitters or receivers," Progress In Electromagnetics Research B, Vol. 56, 235-250, 2013.
doi:10.2528/PIERB13080801

25. Kosmas, P. and M. Rappaport, "Time reversal with FDTD method for microwave breast cancer detection," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444

26. Reyes-Rodríguez, S., N. Lei, B. Crowgey, L. Udpa, and S. S. Udpa, "Time reversal and microwave techniques for solving inverse problem in non-destructive evaluation," NDT & E Int., Vol. 62, 106-114, 2014.
doi:10.1016/j.ndteint.2013.11.003

27. El Sahmarany, L., L. Berry, N. Ravot, F. Auzanneau, and P. Bonnet, "Time reversal for soft faults diagnosis in wire networks," Progress In Electromagnetics Research M, Vol. 31, 45-58, 2013.
doi:10.2528/PIERM13032801

28. Maaref, N., P. Millot, X. Ferrières, C. Pichot, and O. Picon, "Electromagnetic imaging method based on time reversal processing applied to through-the-wall target localization," Progress In Electromagnetics Research M, Vol. 1, 59-67, 2008.
doi:10.2528/PIERM08013002

29. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730

30. Roy Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and S. Udpa, "Class of backpropagation techniques for limited-angle reconstruction in microwave tomography," AIP Conf. Proc., Vol. 1650, 509-518, 2015.
doi:10.1063/1.4914648

31. Roy Paladhi, P., A. K. Sinha, A. Tayebi, L. Udpa, and A. Tamburrino, "Data redundancy in diffraction tomography," Int. Rev. Prog. Appl. Comput. Electrom. (ACES), 1-2, 2015.

32. Roy Paladhi, P., A. K. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.